
DTIC E;LE copy A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

NDTIC
i<1: l[ELECTEII

JUL18B1

THESIS
DESIGN AND IMPLEMENTATION OF

AN MC68020-BASED
EDUCATIONAL COMPUTER BOARD

by

Yavuz Tugcu

December, 1989

Thesis Advisor: Gerald J. Lipovski

Approved for public release; distribution is unlimited.

90 07 18 ' .o

UNCLASSIFIED

SECURITY CLASSIFiCATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMNo. 704-O8e8

la REPORT SECUR!TY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

b DApproved for public release;
b DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATiON
(If applicable)

Naval Postgraduate School 62 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDING SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATiOrj NUMBEP
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IVOR UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

* DESIGN AND IMPLEMENTATION OF AN MC68020-BASED EDUCATIONAL COMPUTER BOARD

12 PERSONAL AUTHOR(S)

TUGCU, Yavuz
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month Day) [5 PAGE CO,;N

Master's Thesis FROM TO 1989 December 135

16 SUPPLEMENTARY NOTATIONThe views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
nent of Defense or the US Government.
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify, by block number)

FIELD GROUP SUB.GROUP microprocessor; coprocessor; Microprocessor
Development System

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The goal of this thesis is to design and implement a Motorola 68020
based Educational Computer Board (ECB), including the Motorola 68881 co-
processor. The ECB has two communication channels, one for an external
I/O device and the other for a Macintosh personal computer. A stored
program can be installed in 8K bytes Programmable Read Only Memory (PROM)
to initialize the ECB and to handle communication, as well as to perform
user commands via a Macintosh personal computer.

The ECB operates at a clock frequency of 16 MHz. It includes four
* Static Random Access Memory (SRAM) chips which provide a storage of 32K

bytes. Two Programmable Array Logic (PAL) chips generate the required
decoding, enabling and timing signals. No special I/O chip is used in
Macintish interface, except for a RS-232 line driver/level changer, as the

20 DtSTRIBUTIONiAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

W UNCLASSIFIED;UNLIMITED 0 SAME AS RPT C1 DTIC USERS IIN TAR T'IT I"
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFIIC) S.'VBO.

LIPOVSKI, Gerald J. 512-471-1952 52
DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CRASS!F CAT O% _ THS PACE-

S/N 0102-LT-0i4-603 UNCLASSIFIED
i

UNCLASSIFIED

SECURITY CLASFICATION OF TMIS PAGE

19. continued

communication on this channel is intended to be under software control
in order to keep the hardware as simple as possible. The channel for an
external device has not been implemented and tested, but all the required
pads and holes are available to install 74244 and 74245 TTL line driver
IC's for this channel.

Acoession ?or

ITIS GRA&I
DTIC TAB 0
Unaennunced 0
Justitcation

By
Distribution/

Availability Codes
Avail and/ or

Dist special

UNCLASSIFIED

ii SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

Design and Implementation

* of

* an MC68020-Based Educational Computer Board

by

Yavuz Tugcu

1st Lieutenant, Turkish Air Force

B.S.E.E., Middle East Technical University, Ankara, 1981

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1989

Author: __________________________________

Ah&vuz Wgcu

Approved by:
t, Germu J. Lipovski, Thesis Advisor

-:Jon T. Butler, Second Reader

John P. Powers, Chairman

* Department of Electrical and Computer Engineering

ii

ABSTRACT

The goal of this thesis is to design and implement a Motorola 68020-based
Educational Computer Board (ECB), including the Motorola 68881 coprocessor. The
ECB has two communication channels, one for an external I/O device and the other for
a Macintosh personal computer. A stored program can be installed in 8K bytes

Programmable Read Only Memory (PROM) to initialize the ECB and to handle
communication, as well as to perform user commands via a Macintosh personal

computer.
The ECB operates at a clock frequency of 16 MHz. It includes four Static

Random Access Memory (SRAM) chips which provide a storage of 32K bytes. Two
Programmable Array Logic (PAL) chips generate the required decoding, enabling and
timing signals. No special I/O chip is used in Macintosh interface, except for a RS-232
line driver/level changer, as the communication on this channel is intended to be under

software control in order to keep the hardware as simple as possible. The channel for
an external device has not been implemented and tested, but all the required pads and
holes are available to install 74244 and 74245 TTL line driver IC's for this chanmel.

<'Fi

iv

TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. AN OVERVIEW OF MC68020 AND MC68881 2

MC68020 Architecture and Features 2

MC68881 Architecture and Features 6

The Interface Between the MC68020 and MC68881 6

I. DESIGN AND IMPLEMENTATION OF THE ECB 8

Introduction to the Design 8

Interfacing with the Memory 9

Interfacing with a Smart Terminal 10

Interfacing with MC68881 Coprocessor 11

Reset and Software Abort Circuits 11

IV. HARDWARE VERIFICATION 13

ROM Read Test .. 13

Testing the Coprocessor Enable (CopE) and Phantom signals 15

RAM Read/Write Test 17

Coprocessor communication test 20

Interrupt Level 4 (RS232 communication) test 22

Interrupt Level 6 (Software Abort) test 24

V. CONCLUSIONS .. 26

The current implementation of the ECB 26
Future Improvements 27

APPENDIX A: MC68020 SIGNAL DESCRIPTION 28

Function Code Signals (FCO through FC2) 28

Address Bus Signals (AO through A31) 28
Data Bus Signals (DO through D31) 29

V

Transfer Size Signals (SIZO, SIZI) 29

External Cycle Start (IECS). 30

Operand Cycle Start (IOCS)............................. 30

Read-Modify-Write Cycle (IRMC) 30

Address Strobe (IAS) 30

Data Strobe (IDS) 30

Read/Write (R/IW). 31

Data Buffer Enable (IDBEN) 31

Data Transfer and Size Acknowledge (IDSACKO, IDSACKI) 31

Cache Disable (ICDIS) 31

Interrupt Priority Level Signals (IIPLO, IIPLl, IIPL2) 32

Interrupt Pending (IPEND) 32

Autovector (IAVEC) 32

Bus Request (IBR) 33

Bus Grant (IBG) 33

Bus Grant Acknowledge (IBGACK) 33

Reset (IRESET) 33

Halt (IHALT).. 33

Bus Error (IBERR) 34

Clock (CLK) 34

APPENDIX B: MC68881 SIGNAL DESCRIPTION 38

Address Bus Signals (AO through A4) 38

Data Bus Signals (DO through D31) 38

Address Strobe (IAS) 38

Size Signal (ISIZE) 39

Chip Select(ICS) 39

Read/Write (R/!W) 39

Data Strobe(IDS) 40

Data Size And Acknowledge (!DSACK0, !DSACK1) 40

Reset (!RESET) 40

Sense Device (ISENSE) 40 -

Clock (CLK). 40

vi

APPENDIX C: MC68020 BUS OPERATION 44

Operand Transfers 44

Bus Operation 46

Interrupt Operation 48

Breakpoint Acknowledge Cycle 49

Coprocessor Operations 49

Bus Error Operation 49

Retry Operation 50

Halt Operation 50

Double Bus Fault 50

Reset Operation 50

APPENDIX D: PROCESSING STATES OF MC68020 52

Privilege States 52

Supervisor States 52

User State 52

Exception Processing 53

General Information 53

The sources of exceptions 55

Reset 55

Address Error 56

Bus Error 56

Instruction Trap 56

Breakpoint 56

Format Error 57

Illegal or Unimplemented Instruction 57

Privilege Violation 57

Tracing 58

Interrupts 58

Return From Exception 59

Exception Stack Frames 59

Normal Four Word Stack Frame (Format $0) 59

Throwaway Four Word Stack Frame (Format $1) 60

Normal Six Word Stack Frame (Format $2) 60

vii

Coprocessor Mid-instruction Exception Stack Frame

(Format $9) 61

Short Bus Cycle Stack Frame (Fornmat SA) 62

Long Bus Cycle Stack Frame (Format B Hex) 63

Coprocessor related exceptions 64

The Coprocessor Detected Exceptions 65

Coprocessor Detected Protocol Violations 66

APPENDIX E: MC68881 REGISTERS AND DATA TYPES 70
MC68881 REGISTERS 70

Floating Point Data Registers (FPO-FP7) 70
Floating Point Control Register (FPCR) 70

Exception Enable Byte 71
Mode Control Byte 72

Floating Point Status Register (FPSR) 72

Condition Code Byte 73

Quotient Byte 73
Exception Status Byte 74

Accrued Exception Byte 74

Floating Point Instruction Address Register (FPIAR) 75
MC68881 DATA FORMATS AND TYPES 75

Single Real (32 bits). 76
Double Real (64 bits).............................. 76
Extended Real (96 bits) 77
Packed Decimal Real (96 bits) 77

APPENDIX F: MC68881 COPROCESSOR INTERFACE 80
SIGNAL CONNECTION AND COPROCESSOR ACCESS 80

COPROCESSOR INTERFACE REGISTERS 81
Response CIR ($00) 81

Control CIR ($02) 82

Save CIR ($04) 82
Restore CIR ($06) 82
Operation Word CIR ($08) 82

viii

Command CIR ($OA) 83

ConditionCR($013 83

Operand CIR ($10) 83

Register Select CIR($14)............................ 83

Instruction Address CIR ($18)......................... 84

Operand Address CIR ($1C)..........................8S4

COPROCESSOR COMMUNICATION AND RESPONSE PRIMITIVES . .. 84

Coprocessor Communication............................... 84

Response Primitives 85

Null Primitive..................................... 85

Evaluate Effective Address and Transfer Data............... 86

Transfer Single Main Processor Register................... 87

Transfer Multiple Coprocessor Register.................... 87
Take Pre-Instruction Exception.......................... 87

Take M id-Instruction Exception......................... 88

APPENDIX G: DESIGN OF THE ECB............................... 89

Memory Mapping.. 89

Programmable Array Logic circuit PAL B......................... 90

Programmable Array Logic Circuit PAL A......................... 91

PHANTOM Signal...................................... 91
RS232 Transmit/Receive Circuit............................ 92

Data Size And Transfer Acknowledge Signals................... 93

Reset Circuit... 95

Software Abort Circuit...................................... 95

I/O Interface for External Devices............................... 96

APPENDIX H: PAL A PROGRAMMING FILES........................100o

PAL A LISTING FILE...................................... 100

PAL A DOCUMENT FILE...................................10)4

APPENDIX I: PAL B PROGRAMMING FILES......................... 114

PAL B LISTING FILE...................................... 114

PAL B DOCUMENT FILE................................... 116

ix

LIST OF REFERENCES... 118

INITIAL DISTRIBUION LIST.....................................119

LIST OF FIGURES

Figure 1 Status Register .. 4
Figure 2 CPU Space Encoding 5
Figure 3 State listing for the ROM read test14
Figure 4 Timing waveforms for the ROM read test 14
Figure 5 Timing between IDSACKO and IAS, IDS 15
14gure 6 State listing of the routine for CopE and Phantom tests 16
Figure 7 Timing waveforms for CopE and Phantom signals 16
Figure 8 Test routine for RAM read/write test 17
Figure 9 State listing of the routine for RAM read/write test 18
Figure 10 Timing diagram for RAM read/write test 18
Figure 11 Timing waveforms for IAS, IDS and IDSACK during write operation... 19
Figure 12 Timing waveforms for IAS, IDS and IDSACK during read operation... 19
Figure 13 Test routine for coprocessor communication 20

Figure 14 State listing for the routine to test the coprocessor communication..... 20
Figure 15 Timing waveforms for the coprocessor communication test 21
Figure 16 State listing for the interrupt level 4 test 23
Figure 17 Timing waveforms for interrupt level 4 operation 23
Figure 18 The state listing for interrupt level 6 test 24
Figure 19 Timing waveforms for interrupt level 6 test 25
Figure 20 MC68020 Read Cycle Timing Diagram 36
Figure 21 MC680120 Write Cycle Diagram 37
Figure 22 MC68881 Read Cycle Timing Diagram 42
Figure 23 MC68881 Write Cycle Timing Diagram........................ 43
Figure 24 Operand representation and size/offset encodings 45

Figure 25 Long word transfer to 16 bit data bus 45
Figure 26 Long word transfer to 8 bit data bus 45
Figure 27 Misaligned longword transfer to 32 bit data bus 46
Figure 28 Misaligned word transfer to 16 bit data bus 46
Figure 29 Normal four word stack frame 60
Figure 30 Throwaway four word stack frame 60
Figure 31 Normal six word stack frame 61

xi

Figure 32 Coprocessor mid instruction exception stack frame 62
Figure 33 Short bus cycle fault stack frame 63
Figure 34 Long bus cycle fault stack frame............................ 64
Figure 35 Floating Point Control Register 70
Figure 36 FPCR Exception Enable Byte 71
Figure 37 FPCR Mode Control byte 72
Figure 38 FPCR Status Register 72
Figure 39 FPSR Condition Code byte 39
Figure 40 FPSR Quotient byte 40
Figure 41 FPSR Exception Status byte 74
Figure 42 FPSR Accrued Exception byte 75
Figure 43 Single Real data format 76
Figure 44 Double Real data format 76
Figure 45 Extended Real data format 77
Figure 46 Packed Decimal Real data format 77
Figure 47 Normalized Number format 78
Figure 48 Denormalized Number Format 78
Figure 49 Zero format ... 78
Figure 50 Infinity format 79
Figure 51 Not-A-Number format 79
Figure 52 MC68020/MC68881 32 bit data bus connection 80
Figure 53 CPU space encoding for coprocessor access 80
Figure 54 Coprocessor Interface Register map 81
Figure 55 Null Format ... 86
Figure 56 Evaluate Effective Address and Transfer Data format 86
Figure 57 Transfer Single Main Processor Register format 87

Figure 58 Transfer Multiple Coprocessor Register format 87
Figure 55 Take Pre-instruction Exception format 88

Figure 60 Take Mid-instruction Exception format 88
Figure 61 Generation of the memory mapping signals 91
Figure 62 PHANTOM signal generation 92
Figure 63 RS232 Transmit/Receive Circuit 93
Figure 64 DSACK Signal Generation 94
Figure 65 Reset Circuit . .. 95

xii

Figure 66 Software Abort circuit 96
Figure 67 1/0 interface for external devices............................. 97
Figure 68 ECB Circuit Diagram..................................... 98

Figure 69 ECB Two Layer PCB Layout............................... 99

xiii

LIST OF TABLES

Table 1 MC68020 Address Spaces 4

Table 2 Function Code Encodings 28
Table 3 Transfer Size Encodings 29

Table 4 DSACK codes .. 31
Table 5 Interrupt Priority and mask levels 32

Table 6 MC68020 AC Electrical Specifications 35
Table 7 MC68881 Data Bus Size Encoding 39
Table 8 MC68881 AC Electrical Characteristics 41

Table 9 MC68020 External Data Bus Multiplexing 44

Table 10 Trace Bit Encoding 58
Table 11 IEEE non-aware branch condition predicates 66

Table 12 MC68020 Exception Vector Table 67
Table 13 MC68020 Extensions To M68000 Family Instructions 68
Table 14 MC68020's Improved Features 68

Table 15 MC68020 Instruction Set 69

Table 16 ECB Memory Mapping Scheme 1 89
Table 17 ECB Memory Mapping Scheme 2 90

xiv

I. INTRODUCTION

Microprocessors continue to be an integral part of many complex digital systems.

Through improvements in manufacturing techniques, they have become more powerful

and more complex. This power and flexibility is accompanied by increased complexity

and difficulty in hardware and software design. The hardware designer must consider
more control and data signals. Similarly software design entails more detailed

considerations. The complexity of a microprocessor-based system also increases the

difficulty of maintenance and troubleshooting. The operation of such a system should

be throughly understood before attempting any troubleshooting action.

The manufacturers of microprocessors have introduced new products so often that
the number of people who know and use these products is somewhat limited. The best
way of learning a system is through using it. This idea forms the basis for the thesis

presented here. Within the scope of the thesis, an Educational Computer Board (ECB)

has been designed and implemented to be used

* as a tool for teaching a state-of-the-art microprocessor and coprocessor design,
and

* as an experimental, test, or control device for scientific applications.

In the design of ECB, the main consideration was to use the minimum number of
external components to achieve simplicity, low-cost and reliability.

In the chapter "An overview of MC68020 and MC68881", the basic operations of
main processor and co-processor are reviewed. The chapter "Design and Implementation

of the ECB" discusses several design alternatives and explains why a particular design
has been selected. The chapter "Hardware verification" includes the outputs of a series

tests to verify the operation of the ECB. A comparison is made, in the last chapter

"Conclusions", between the ECB developed in this thesis and the ECB previously

designed by Motorola and still in use in microprocessor-based courses at the Naval
Postgraduate School. Also suggested future improvements are given in this last chapter.

H. AN OVERVIEW OF MC68020 AND MC688I

This chapter introduces the architecture and features of the MC68020 and its

associated coprocessor MC68881. Also given is a brief description of the signals and

the interface between two processors. Detailed information on the signal description,

timing and instruction set is given in Appendix A, B and D.

A. MC68020 Architecture and Features
Implemented in VLSI technology, the MC68020 is upwardly compatible with its

predecessors, the M68000 and M68010. That is, in addition to the new instructions, all

the instructions that run on the old M68000 family members, can be run on MC68020.

All I/O devices that can be connected to the M68000 and M68010 can also be

connected to MC68020. A table of MC68020 instructions and new instructions which

are extensions to old M68000 family members are given in Appendix D.
The MC68020 has an 128 word on-chip cache memory (compared to 3-word

cache memory in M68010 and no cache memory in M68000). The advantage of cache

memory is to reduce both the total execution time of a program and the external bus

activity of the processor without degrading the performance. The basic idea is to store

the instruction stream prefetched from main memory into the faster on-chip cache

memory so that the processor does not have to access main memory to fetch the next

instruction in most cases. This on-chip cache memory can be enabled or disabled by

applying an external signal to the chip. The ECB has been implemented with this

feature disabled.

The MC68020 contains 32-bit data/address registers and 32-bit data/address buses.

Thus, it can directly address a memory range of 4 Gigabytes. In each bus cycle, the

microprocessor can determine the port size of the external device to or from which an

operand is to be transferred. This feature is called "Dynamic bus sizing". The MC68020
can be connected to external devices having port sizes of 8, 16 or 32-bits, so all data

alignment restrictions are eliminated. On the ECB, 32K byte ROM is connected as an

8-bit port and 32K byte RAM is connected as a 32-bit port. An input signal can inform

the microprocessor, if an external device does not respond to a command within a

specified period of time, so that the microprocessor can initiate a new bus cycle. This

2

signal (BERR) which is to be generated by an external circuit has not been used on the
ECB, as the purpose in the design is to use minimum hardware to the degree that

guarantees the proper operation of the ECB, as well as to make it easy for the
programmer to write the software that will handle the operation of the ECB, during this

development phase. Appendix C includes the information on "Bus Operation" and
focuses on dynamic bus sizing and multiplexing of the data onto the external bus.

The MC68020 has three processing states, and it is always in one of these states:

normal, exception and halt. In the normal state, the processor executes instructions

(fetching instructions and operands, storing results and communicating with the
co-processor). If an unusual condition (exception) occurs during normal instruction

execution, the processor enters the exception state to handle this condition easily. An

exception can be generated internally by an instruction or externally by an interrupt,

reset, etc. The processor enters the halt state whenever it detects a system failure. In
halt state, there will be no processor activity, until an external reset (the only means to

regain the processor activity) is applied to restart the processor. The halt state is not the

same state as the stopped state which is caused by STOP instruction. The instruction
execution on a stopped processor resumes after a trace, interrupt or reset exception.

Within each of the three processing states, there are two privilege levels, user and
supervisor. The supervisor state has higher privilege than the user state, so that all

processor instructions are available to execute in this state. In the user state, programs

are allowed to access only their code and data areas, and they cannot execute some

processor instructions related to system functions. This provides security in the

microprocessor system.

The MC68020 behaves slightly differently in the supervisor state than the old

M68000 family members. It allows the separation of supervisor stack space for user
tasks and for interrupt associated tasks in order to increase the efficiency in a

multi-tasking operaing system. This separation is enabled by setting the M bit in the

status register. The M bit is cleared, whenever an exception occurs for interrupts. The
processor can be switched from the user state to the supervisor state only through

exception processing. Switching from the supervisor state to the user state is
accomplished by executing an instruction that can modify the status register. Figure 1
shows the positions of the status and control bits in the status register.

3

15 14 13 12 II 16 9 S 7 6 S 4 3 2 I 6

I I 0II S I M I 12 I II II IS I I I X N I z C

Figure 1 Status Register

The MC68020 has three defined types of address space, encoded by the function

code pins FCO-FC2. These address spaces are the user data/program space, the

supervisor data/program space and the CPU space, as shown in Table 1.

Table 1 MC68020 Address Spaces.

rC2 rCI rcs ADDRESS SPACE

0 1 1 UNDEFINED

I I I USER DATA SPACE

I 1 6 USER PROGRAM SPACE

I 1 I UNDEF INED

I I # UNDEFINED

I I 1 SUPERVISOR DATA SPACE

I # SUPERVISOR PROGRAM SPACE

I I I1 CPU SPACE

The user and supervisor address spaces have no predefined memory locations,

except for the addresses of the initial interrupt stack pointer and program counter values

that are held in the first two longwords of the supervisor program space. The MC68020

fetches these two longwords and loads them into the interrupt stack pointer and the

program counter, respectively, by reading from supervisor program space. CPU space

accesses are made when the processor communicates with the external devices for data

movements other than those associated with instructions, like interrupt

acknowledgements and coprocessor operation. During CPU - space accesses, address

lines A19 through A16 specify the type of CPU space, as shown in Figure 2.

4

FUNCTION ADDRESS BUS

CODE 31 29 19 16 15 13 12 5 4 6

[T -t-~, , O,,f ,, , 1 * S S ' I 0 Cp ID S .0 0 , ICIR REGISTER

Figure 2 CPU Space Encoding

On the ECB, the address lines A18, A17 and A15 are used to generate the chip

enable signal for the MC68881 coprocessor. The function code lines FCO-FC2 are not

incorporated in the co-processor chip select generation circuit.

In the processing of an exception, the MC68020 goes through four identifiable

steps.

1. An internal copy of the status register is saved temporarily and the status register

is set to process the exception.

2. The exception vector is generated. An exception vector is a pointer to the

memory location containing the address of the routine which handles the specified

exception. There are 254 exception vectors available in the supervisor data space, and 2

vectors for the reset exception in supervisor program space. A group of 64 vectors is

defined by the processor and the remaining 192 vectors are left for user to define.

Exception vectors can be generated externally or internally. On the ECB, all the

interrupts are auto-vectored, that is, the exception vectors are generated internally by

the processor upon the recognition of the interrupt.

3. The current processor context is saved on the exception stack frame created on the

active supervisor stack. This context always includes the status register, the program

counter and the vector offset for the exception vector. Another field on the exception

stack frame called "format field" is used to specify what additional processor state

information has been put onto the stack frame, as there is more than one type of

exception stack frame created by different exceptions.

4. At the last step, the address of the exception handler is loaded into the prograin

counter, then the instruction at that address is fetched and the program execution is

5

resumed.

For detailed explanation on exception processing, see Appendix D.

B. MC68881 Architecture and Features

The MC68881 floating-point coprocessor is implemented in VLSI and HCMOS

technology which combines the HMOS (High Density NMOS) and CMOS

technologies to achieve low power, high speed and minimum silicon area. Although it

is primarily designed for use with MC68020 microprocessor, it can also be used with

the old M68000 family members with some degradation in the performance. This is

due to the fact that the MC68881 is recognized as a coprocessor by the MC68020 and

as a peripheral processor by the other M68000 family members. The data bus on

which MC68881 operates can be 8, 16 or 32-bits wide. The MC68881 has eight 16-bit

and four 32-bit co-processor Interface Registers (CIR) which are memory-mapped to

the CPU address space of MC68020 in order to provide exchange of commands and

data.

From the programmer's point of view, the pair MC68020/MC68881 can be

thought as one MC68020 processor implemented on the same chip, having additional

eight floating-point data registers. Each floating-point data register is 80-bit wide (1

sign bit, 64 bits for mantissa and 15 bits for exponent). The MC68881 fully conforms

to IEEE P754 Binary Floating Point Arithmetic Standard and supports seven data types:

byte, word, long integer, single, double, extended precision real and packed BCD real.

There are 22 scientific constants available on the chip.

Appendix E includes detailed information on the MC68881 registers and data

types. Appendix B contains the MC68881 signal description.

C. The Interface Between the MC68020 and MC68881

The interface between the MC68881 and the main processor is provided by the

M68000 Family coprocessor interface which allows connection of up to eight

co-processors. Each co-processor is addressed by driving its ID number on the address

lines A13 through A15. On the ECB, these lines are not decoded to generate the chip

6

select signal, as there is only one co-processor which is always addresssed for any ID

number.

The main processor MC68020 communicates with the floating point coprocessor

MC68881 over a 32-bit data bus, and accesses the coprocessor interface registers

through bus cycles. Each interface register (CIR) has a specific function and is used as

a communication port. The coprocessor connection diagram for 32-bit data bus is given

in Appendix F. On the ECB, function codes FCO-FC2 are not used for the generation

of chip select signal.

The interface tasks are divided between the MC68020 and MC68881 so that they

do not duplicate each other's functions. For example, the main processor does not have

to decode the co-processor instructions; it is the responsibility of the co-processor to

decode these instructions. On the other hand, the coprocessor does not involve the

calculation of the effective address. It only instructs the main processor to transfer an

operand over the interface, then it is the responsibility of the main processor to

calculate the effective address and fetch the operand. Thus, the coprocessor never

becomes a bus master.

7

I. DESIGN AND IMPLEMENTATION OF THE ECB

This chapter gives a brief description of how the ECB has been configured and

discusses the design of the external hardware, as well as the benefits of the particular

design selected. The description of external circuits are not given in detail in this

chapter. Appendix G can be referred to for detailed information.

A. Introduction to the Design

Before going into the details of the design, the configuration of the ECB had to

be determined, that is, what external devices would be connected to the main processor

and in which way they would be connected. The ECB was intended to communicate

with a smart terminal to download user programs and to issue commands for running

the downloaded programs and for manipulating the other ECB functions. Thus, the first

external device was a smart terminal, like a personal computer. Memory was the

second external device to exist on the ECB, since every processor needs some memory
for storing programs and data. The last external device was the MC68881 coprocessor.

Once the configuration of the ECB had been determined, the next step was to

design the external circuits which would provide the required interface between the
MC68020 and the three external devices. The main objective in the design of the

external circuits was to keep the hardware at the required minimum to allow proper
operation of the ECB in the simplest and primitive way.

All handshake signals for three external devices are generated by two

Programmable Array Logic IC's PAL16R4 and PAL16L8. Another integrated circuit,

MAX232 converts the RS-232 line voltage levels to TrL-voltage levels and vice versa,

with a +5V power supply only. Except for the reset and software abort circuits, the

other main components on the ECB are the MC68020 processor, the MC68881
coprocessor and the memory chips (I 27C256 ROM chip, 4 6164 RAM chips).

In the following sections the interface with each external device will be discussed

separately.

8

B. Interfacing with the Memory

The memory to be implemented should be large enough to hold the initialization
and user programs/data, as well as the basic routines, but small enough to keep the

hardware simple and inexpensive. Small memory size also allows the high order
address bits to be used for other purposes, like RS-232 transmission and reception, as

explained later.

1. Non-volatile memory (ROM) is used to hold the initialization data and routine
during power-up. An 8K byte ROM is sufficient for that purpose.

2. Volatile memory (RAM) is required to hold the user programs and data to be

downloaded via the RS-232 interface. A 32K byte RAM was found to be
satisfactory for this.

An important design consideration is what kind of information is to be stored in
non-volatile and volatile memories. It was decided that low level routines for
initialization, I/O (input/output) and exception handlers would be kept in ROM in order
to provide security for basic routines which should not be destroyed by overwriting. A
requirement imposed by the system is that ROM must be accessed in the very first
addresses to allow for fetching the initial interrupt stack pointer and program counter
values (reset exception vector). On the other hand, it is very convenient for the user to
write his/her own exception routines and to change the contents of the exception vector
table located in low memory. This stipulates that both ROM and RAM must be
mapped into low addresses which is the case with the current implementation during

power-up or reset. In order to prevent collision on the data bus, all reads are made

from the ROM and all writes go to RAM when both memories are mapped into the
same space. This allows both to fetch the reset exception vector and to copy the
contents of ROM to RAM. After a copy of ROM is made to RAM, then the ROM is
detached from the low addresses and mapped into higher addresses. Only RAM is
accessible for reading and writing in the low addresses thereafter. By this scheme, the
user can change the exception vectors in low memory RAM and can access the basic

routines in high memory ROM.

9

The last step in the design process was the development of the external circuits in

order to generate the required interface signals with proper timing. These signals are

generated by two PAL (Programmable Array Logic) circuits. PAL A (PAL16R4)

generates the signal (PHANTOM) which detaches ROM from low addresses and maps

into higher addresses. PAL A also returns "Data size and acknowledge" signals

(DSACKO, DSACK1) which tells MC68020 that an 8-bit port (or 32-bit port) has been

accessed when ROM (or RAM) was addressed. PAL B (PAL16L8) generates the chip

select signals for both ROM and RAM, and Read/Write signal for RAM, thus

performing the memory mapping. DSACK signals for ROM accesses are delayed to

make sure that correct data has been put on the data bus, since the ROM chip has a

longer access time than the RAM chips. The volatile memory has been chosen for

static RAM (SRAM) which eliminates the refresh hardware required for Dynamic

RAMs and provides faster access time.

As a summary of memory interfacing: the size of the memory (8K byte ROM

and 32K byte RAM) is sufficient for most programs and leaves high order address bits

to be used for other purposes. Static RAM helps the designer reduce the hardware. It

also provides fast access and reliability. The memory mapping scheme imposes access

of ROM in low addresses, during power-up or reset, and in high addresses after

initialization, in order to execute the basic routines. This technique enables the user to

modify the system data located in RAM in the low address region. Appendix G covers

more detailed information on memory interfacing.

C. Interfacing with a Smart Terminal

The ECB communicates with a smart terminal via a serial RS-232 interface. The

serial interface is simple; it requires only three wires, but it is slower when compared

to a parallel interface with the same clock rate. A voltage level converter chip matches

the signal levels on the ECB to the RS-232 t ne. No special I/O (input/output) chip has

been used. The reception and transmission on the RS-232 interface has been

implemented in software to keep the hardware simple (see Reference 1). Input and

output signals for RS-232 are passed through PAL A and buffered by the level

converter chip. Setting the address lines A19 and A15 to high causes a zero to be

transmitted on the RS-232 line. On the other hand, setting the address lines A19 and

A17 to high causes the RS-232 line to be strobed. If the line is found high (a zero bit)

10

then an autovectored interrupt of level 4 is generated. The reception of the incoming

byte can be handled by the interrupt handler pointed by level four interrupt vector
entry. With this scheme, the communication with a smart terminal is only possible

when RS-232 line is monitored by the software on the ECB. For detailed explanation

and circuit diagrams of this interface see Appendix G, H, and I.

D. Interfacing with MC68881 Coprocessor

The most efficient and fastest interface between the MC68020 and its dedicated
coprocessor MC68881 is via a 32-bit data bus. Both processors use the same clock,

although they can run on different clocks. The connection of most signals are

straightforward and direct. The only signal to be dealt with here is the chip select

(CopE) which is generated by PAL B out of the address lines A18, A17 and A15. The
chip select signal for the coprocessor is also used in the generation of another signal

(PHANTOM) which detaches ROM from low address region after initialization.

Appendix G, H and I include the detailed explanation of the interface and the

generation of the chip select signal.

E. Reset and Software Abort Circuits

The main processor and the coprocessor must be reset in order to set their states

and registers to predefined and known values. This arises in two cases, initial power-up

and reset after a catastrophic system failure in order to bring the system up. It is
guaranteed that both processors recognize the reset condition if their reset inputs are

held low at least 100 ms by the external circuit. The reset circuit which has been built

around Motorola's low voltage detector is quite simple. An external resistor-capacitor

combination provides the required delay of at least 100 ms.

In case the user program runs out of control or enters an unintended loop for any

reason, the user must have a means to abort the program and return to a defined point
before re-running the program without resetting the processor. This is provided by the
software abort circuit consisting of all passive components. The circuit generates an

autovectored interrupt of level 6, upon pushing the software abort button. The level of
the interrupt is one less than the non-maskable highest level. The reason for choosing a

level 6 interrupt rather than a level seven interrupt is that the output of the abort circuit

11

is not debounced. This causes more than one interrupt to occur sequentially, after the

software abort switch is released. If a level seven interrupt is generated by the software

abort circuit, all the successive interrupts (non-maskable) due to non-debounced output

will be recognized. This imposes a delay in the processing of the interrupt, and

unnecessary pushes onto the stack, until the bouncing of the switch stops. Assigning a

level 6 interrupt to the software abort function improves the response considerably. In

the interrupt handler for the software abort, the mask level in the status register is set

to 7, before beginning the exception processing so that further level 6 interrupts are not

recognized (see Reference 1). This greatly reduces the number of spurious level 6

interrupts that are recognized after the first one.

12

IV. HARDWARE VERIFICATION

After implementation, the hardware has been verified by running a series of short

routines to test the following:

" ROM read.

• Generation of the coprocessor chip enable CopE and PHANTOM signals.

" RAM read/write.

• Coprocessor communication.

" Interrupt 4 (RS-232 reception) operation.

" Interrupt 6 (Software Abort) operation.

All the tests have been conducted by using the debugger in Reference 1 and the Logic

Analyzer HP1650A.

A. ROM Read Test.

The routine for the ROM read test is the RS232 reception routine, itself, which

resides in the ROM (See Reference 1). A part of the state listing for this routine is

given in Figure 3, in which the MC68020 makes sequential reads from supervisor

program space. DSACK signals generated by the PAL B return an 8-bit port size for

the ROM. The timing waveforms are shown in Figure 4, where it can easily be seen

that function codes (FC2 through FCO) are encoded for supervisor program address

space. IDSACKI signal stays high all the time and only IDASCKO is asserted, after

[DS and !AS are asserted, to indicate an 8-bit port size. The ROM chip enable signal

ROMCE is the only chip select signal that is active. Figure 6 shows the relation

between IDSACKO and !AS. IDS in an expanded scale. The X marker is at the point
where IAS and !DS are asserted, and the 0 marker is at the point where !DSACKO is

asserted. The specification for the time between two markers is 80 ns maximum (See

Appendix A). The measured time is 70 ns as seen in Figure 5.

13

68020 -State Listing

Miarkers Of

Label > FADR-- STAT SC
Ba se > I--Hex I exJ SymbolS mo

+0000 000404DA 'EOOOOOO SIJPR PGRI READ B BIT PORT
+000 1 000404DB F9000000 SUPR PGRI1 READ B BIT PORT
+0002 000404DC 00000000 SUPR PGR1 READ 8 BIT PORT
+0003 000404DD OEOOOOOO SUPR PGRI1 READ B BIT PORT
+0004 000404DE 04000000 SIJPR PGRtI READ B BIT PORT
+0005 000404DF EOOOOOOO SUPR PGR1 READ B BIT PORT
+0006 OOOE04EO 4E000000 SUPR PGR1 READ B BIT PORT
1+0007 000E04EI 71000000 SUPR PGRM READ B BIT PORT
+0008 000E04E2 4E000000 SUPR PGR1 READ 8 BIT PORT
+0009 000E04E3 71000000 SUPR PGRM1 READ 8 BIT PORT
+00 10 000E04E4 4E000000 SUPR PGR1 READ B BIT PORT
+0011 000E04E5 71000000 SUPR PGRM1 READ 6 BIT PORT
+0012 000E04E6 4E000000 SUPR PGRt1 READ B BIT PORT
+00 13 000E04E7 F9000000 SUPR PGR1 READ B BIT PORT
+0014 OOOE04ESB 00000000 SUPR PGR1 READ 8 BIT PORT

Figure 3 State listing for the ROM read test

66020 T iming Haveforms

Mlarkers Time X to Tr ig 10. 73 us1I Time X to 0- 70 iis
Accumulate Ot 0 to Trig 10.80 u-s1 AtX rkr RiE

Time/Div 1.000 us Delay 10.74 us 0

FCOe4Tmn wvfrsfrth O edts

.. 14

60020 - Timing Naveforms

Markers Time IX to Trig 10.73 usi Time X to 0I 70 ns

Accumulate 0 to Trig 10.80 usl t X Mterker ROMCE
Time/Div 100 ns 1 Delay 1 10.74 usD 0

-off- -off- I

-oP g- I

Figure 5 Timing between !DSACKO and !AS, IDS

B. Testing the Coprocessor Enable (CopE) and Phantom signals.

The test routine for these two signals is the initialization routine for the ECB

(See Reference 1). The state listing for part of the routine is shown in Figure 6. When

the PHANTOM signal is high (default state after a reset or power up), an image of the

ROM is mapped onto the RAM, and all reads are made from ROM, whereas all writes

go to the RAM. After the PHANTOM is driven low, the ROM image is removed from

RAM region and the RAM can be accessed for both reading and writing. The only way

to drive the PHANTOM low is to make a coprocessor access. In the initialization

routine, the coprocessor is accessed by MOVE.L instruction to read data from $20000,

which is shown as supervisor data space in Figure 6 (lines +0000 and +0001).

15

68020 -State Listing Ina--

Markers Oftf

Label > jARRZ j 68020 Mnemonic
Base Hex _jdecimal (S m hex)LI

+0000 00020000 * OBO2xxxx supr data read SUP
+0001 00020002 SFFFFxxxx supr data read SUP
+0002 00000434 CHK2.L- (A2),DO SUP
+0003 000404D0 RTS SUP
+0004 000404DI S75xxxxxx supr prgm read SUP
+0005 000404D2 MOVEM.L rm-$EFOO,-(A7) SUP
+0006 000404D3 SE7xxxxxx supr prgm read SUP
1+0007 OOO1FFF8 $00000436 supr data write SUiP
+0005 000404D4 SEFxxxxxx supr prgm read SUP
+0009 000404D5 $00xxxxxx supr prgm read SUP
+0010 000404D6 MOVE.8 #S$0L01 SUP
+0011 000404D7 63Cxxxxxx supr prgm read SUP
+0012 000404D6 S00xxxxxx supr prgm read SUP
+0013 000404D9 SOlxxxxxx supr prgm read SUP
+0014 000404DA JMP OOOE0E SUP

Figure 6 State listing of the routine for CopE and Phantom tests.

68020 -Timing Naveforms

Markers Time X to Trig -110 nls1I Time X to 110 'Is
Accumulate 0f 0 to Trig 0 s] At Fx- arkerT FPHAN I

Time/Div 500 ns Delay 2.040 us-

Figure~~ ~~ 7 iigwvfrsfrCoEadPatmsgas

I6

Figure 7 shows the timing diagram for CopE and PHANTOM signals. The
PHANTOM signal goes low 110 ns after the CopE signal is asserted, and it is not
affected by the negation of CopE. The first read operation after the negation of CopE
is made from RAM, which is only possible when the PHANTOM is low. (See line
+0002 in Figure 7 and the point where both DSACK signals are driven low

simultaneously, to indicate 32 bit RAM port, in Figure 7).

C. RAM Read/Write Test

The routine for this test was downloaded by using the debugger in Reference 1.
Figure 8 shows the piece of the code.

00001000 21FC555555556000MOVE.L #1431655765,$00006000
00001008 20386000 MOVE.L $00006000,D0
O000100C 6000FFF2 BRA.L $001000

Figure 8 Test routine for RAM read/write test

The state listing for this routine is given in Figure 9. A 32-bit port size is
indicated by the DSACK signals. The routine runs in the supervisor state and repeats
itself with the sequence: three sequential program reads (lines +0004 through +0006),
one data write (line +0007), one program and data read (lines +0008 and +0009), and
another program read (line +0010). This sequence can also be seen in the timing
diagram given in Figure 10. The X cursor line corresponds to the line +0000
(SUPERVISOR DATA WRITE) in Figure 10. Function Code signals, FC2 through
FCO, either indicate supervisor data space (101) or supervisor program space (110).
DSACK signals always return a 32-bit port size and only the RAM chip enable signal
RAMCE is active. Figures 12 and 13 show the timing between the negation of 1AS,
!DS signals and the negation of DSACK signals during a write and read operation,
respectively. The specification for this period is 80 ns maximum and it was measured

as 70 ns.

17

66020 -State Listing

Markers Off

Laibel I IR FDAZ STATIF SC
Base > I He J1LHx F -Symbol [1 Sybol j

+0000 00006000 55555555 SUPR DATA WRITE 32 BIT PORT
+0001 0000100C 6000FFF2 SUPR PGR1 READ 32 BIT PORT
+0002 00006000 55555555 SUPR DATA READ 32 BIT PORT
+0003 00001010 0C41F0A2 SUPR PGRI1 READ 32 SIT PORT
+0004 00001000 21FC5555 SUPR PGRII READ 32 BIT PORT
+0005 00001004 55556000 SUPR PGRII READ 32 BIT PORT
+0006 00001008 20356000 SUPR PGRII READ 32 BIT PORT
10007 00006000 55555555 SUPR DATA WRITE 32 BIT PORT
+0005 0000100C 6000FFF2 SIJPR PGRH READ 32 BIT PORT
+0009 00006000 55555555 SUPR DATA READ 32 BIT PORT
+0010 00001010 OC41FOA2 SUPR PGRII READ 32 BIT PORT
+0011 00001000 21FC5555 SUPR PGRI1 READ 32 SIT PORT
+0012 00001004 55556000 SUPR PGR1 READ 32 BIT PORT
+0013 00001008 20386000 SUPR PGR1 READ 32 BIT PORT
+0014 00006000 55555555 SUPR DATA WRITE 32 BIT PORT

Figure 9 State listing of the routine for RAM read/write test

682 Timing Naveforms
Markers Time X to Trig 9.800 us Time 'X to 01 3.620 us
Accumulate Of 0 to Trig 13.42 us AtXMrkr RiE

Time/Div 500 ns Delay 11.79 us 1

Fiur 10Tmn0iga o RMra/rtet

18

66020 -Timing Waveforms

Miarkers Time X to Trig 10.23 us ETime X to o 70 ns

Accumulate Of 0 to Trig 10.30u At XIakr R~C

Time/Div 100 fls Delay 10.60 us

I

Igr alTmn.aeom orlS D n DAKduigwieoeain

68020e 11 Timing aveforms AISadISC duigwteprton

Mlarkers Ti me X to Trig 1 .97 us Time X to 0_ 70 ns

Accumulate Off 0 to Trig 12.04 usI At Mrkr RlC

Time/Div 100 ns Delay [12.20 us- I

IFC

o ff-

Figure 12 Timing waveforms for !AS, IDS and !DSACK during read operation.

19

D. Coprocessor communication test

The routine for this test consists of a loop of the instruction FPMOVE #7,FP7

and given in Figure 13. The state listing obtained during the execution of this routine is

given in Figure 14, and Figure 15 shows the corresponding timing waveforms.

00001000 F23C WORD $F23C
00001002 4380 CHK.W DODI
00001004 00000007 OR.B #79DO
00001008 6000FFF6 BRA.L $001000
0000100C 6000FFF2 BRA.L $001000

Figure 13 Test routine for coprocessor communication

68020 - STATE LISTING

Label > ADDR DATA STAT OSACK
Base > Hex Hex Symbol Symbol

+0000 00022000 0900FFF6 CPU SPACE 16 BIT PORT
+0001 0000100C 6000FFF2 SUPR PGRM READ 32 BIT PORT
+0002 00001000 F23C4380 SUPR PGRM READ 32 BIT PORT
+0003 00001004 00000007 SUPR PGRM READ 32 BIT PORT
+0004 0002200A 43804380 CPU SPACE 16 BIT PORT
+0005 00022000 95044380 CPU SPACE 16 BIT PORT
+0006 00022010 00000007 CPU SPACE 32 BIT PORT
+0007 00001008 6000FFF6 SUPR PGRM READ 32 BIT PORT
+0008 00022000 0900FFF6 CPU SPACE 16 BIT PORT
+0009 0000100C 6000FFF2 SUPR PGRM READ 32 BIT PORT
+0010 00001000 F23C4380 SUPR P6RM READ 32 BIT PORT
+0011 00001004 00000007 SUPR P6RM READ 32 BIT PORT
+0012 0002200A 43804380 CPU SPACE 16 BIT PORT
+0013 00022000 95044380 CPU SPACE 16 BIT PORT
+0014 00022010 00000007 CPU SPACE 32 BIT PORT
+0015 00001008 6000FFFS SUPR PGRM READ 32 BIT PORT

Figure 14 State listing for the routine to test the coprocessor communication.

20

The execution of the instruction begins by a supervisor program read from the address

$1000 (lines +0002 and +0003 in Figure 14). Since this is an F-line instruction, the

MC68020 writes to the command CIR, which has an offset $OA (line +0004) and reads

the response CIR (line +0005). The response CIR contains the primitive "Evaluate

Effective Address and Transfer Data" (code 9504). Then, the MC68020 writes the

immediate data into the operand register which has an offset $10 (line +0006). The

next read from the response CIR returns a "Null primitive" (code $0900) which shows

that the MC68020 is not needed for the execution of the coprocessor instruction, so

that the MC68020 can continue to execute the next instruction. The routine loops after

executing the branch instruction (line +0007). As it can be seen both in the state listing

and the timing waveforms, the port size returned during coprocessor accesses depends

on the length of the CIR register being addressed by the MC68881. A 16-bit port size

is returned for the response and command CIRs, which are 16-bit wide (lines +0004

and +0005 in Figure 14), and 32-bit port size is returned for the 32-bit wide operand

register (line +0006 in Figure 14). As shown in Figure 15, the time between the

assertion of coprocessor chip select signal CopE and the assertion of IDS signal was

measured as 50 ns, for which the specification is 35 ns minimum.

168020 I" Timing Naveforms

Markers Time X to Trig -2.450 us I Time X to 0 50 ns

Accumulate O 0 to Trig -2.400 us At IX Orker COPE
Time/Dlv 500 ns j Delay[-860 ns 0

xo

F1 all !
IDS all i_ _..

IAS e

-off-

RQM 1--~
Ji -- I -J

Figure 15 Timing waveforms for the coprocessor communication test

21

E. Interrupt Level 4 (RS232 communication) test.

The interrupt routine used during this test is the one in Reference I. The state
listing and the timing waveforms are given' in Figures 16 and 17, respectively. A level

4 interrupt is generated, when !IPL2 line is driven low (X marker position in Figure

18). The MC68020 acknowledges the interrupt by setting all the function code lines

high (0 marker position in Figure 17). During this interrupt acknowledge cycle, the

address lines A3 through Al contain the level of the interrupt being acknowledged, and

all the other address lines are driven high (line +0008 in Figure 16). Then, a four-word

stack frame (Format $0) is created and the current processor context is saved onto this

frame, as follows (refer to the line numbers in Figure 16):

" line +0009 : save the status register.
(writing a word operand to 32 bit port)

" line +0011 and +0012 : save the program counter.
(This is also an example of writing a misaligned longword to
32 bit port. Due to misalignment, the MC68020 makes two
successive accesses to the stack)

line +0017 : save the format number and vector offset.
(writing a word operand to 32 bit port)

The address of the interrupt handler ($00040C08) is fetched from the exception vector

address ($00000070) for the level 4 interrupt (line +0010), and the MC68020 enters the

interrupt handler routine (line +0013). As it can be seen in the state listing, because of

the instruction prefetch, the order of the processor activity does not show the actual

order of the instructions executed. For example, the last program read, before the

interrupt acknowledge is from the address $000E04E7 (line +0007), but the PC value

saved on the stack frame is $000E04E2 (lines +0011 and +0012). This indicates that
the MC68020 did not execute the instructions stored in memory locations $000E04E2

and higher, thus the instructions fetched in the lines +0003 through +0007 are only

prefetched instructions which were not executed yet.

22

68020 - State Listing

Markers Off

Label > ADD DATA STAT DSACK
Base > Hex Symbol ,Symbol 1

+0003 O00E04E3 71000000 SUPR PGRM READ 8 BIT PORT
+0004 O00E04E4 4EO00000 SUPR PGRM READ B BIT PORT
+0005 O00E04E5 71000000 SUPR PGRM READ 8 BIT PORT
+0006 O00E04E6 4EO00000 SUPR.PGRM READ 8 BIT PORT
,0007 O00E04E7 F9000000 SUPR PGRM READ 8 BIT PORT
+0008 FFFFFFF9 00000000 CPU SPACE HAIT STATE
+0009 O001BD54 20002000 SUPR DATA HRITE 32 BIT PORT
1+0010 00000070 00040C08 SUPR DATA READ 32 BIT PORT
+0011 0001BD56 OOOEOOOE SUPR DATA HRITE 32 BIT PORT
+0012 0001BD58 04E204E2 SUPR DATA HRITE 32 BIT PORT
+0013 00040C08 02E204E2 SUPR PGRM READ 8 BIT PORT
+0014 00040C09 AFE204E2 SUPR PGRM READ 8 BIT PORT
+0015 O0040COA FFE204A2 SUPR PGRM READ 8 BIT PORT
+b006 O0040COB F5000402 SUPR PGRM READ 8 BIT PORT
+0017 O001BD5A 00700070 SUPR DATA HRITE 32 BIT PORT

Figure 16 State listing for the interrupt level 4 test

68020 - iming Heveferms

Markers Time X to Trig -30 ns ITime X to 0 7.020 us

Accumulate O 0 to Trig 6.990 us] At X Marker IPL2

Time/Div 1 2.000 us7 Delay 5.090 us 0

xP IF c

Figure 17 Timing waveforms for interrupt level 4 operation.

23

F. Interrupt Level 6 (Software Abort) test.

The interrupt routine used in this test is the one in Reference 1. The state listing

and timing waveforms are given in Figures 18 and 19, respectively. The interrupt is

handled in the same way as the level 4 interrupt. The only difference is the level of the

interrupt and the exception vector address ($00000078). The interrupt is generated by

driving both IIPL2 and !IPL1 lines low, simultaneously (See Figure 19). The

MC68020 does not ackowledge the interrupt, immediately. Instead, it drives the

!IPEND line low and completes the current instruction execution. When the current

instruction is completed, the MC68020 enters the interrupt acknowledge cycle and

negates the uIPEND line (X marker position in Figure 19). Address line A18 is shown

as a sample of the address bus, during this activity. It is asserted first during the

interrupt acknowledge cycle and second to access the routine in the ROM.

68020 - STATE LISTING

Label > ADDR DAA STAT DSACK
Base > Hex Hex Symbol Symbol

+0000 00022000 95044380 CPU SPACE 16 BIT PORT
+0001 00022010 00000007 CPU SPACE 32 BIT PORT
+0002 00001008 6000FFF6 SUPR PGRM READ 32 BIT PORT
+0003 00022000 0900FFF6 CPU SPACE 16 BIT PORT
+0004 0000100C 6000FFF2 SUPR P6RM READ 32 BIT PORT
+0005 FFFFFFFD OOOOFFF2 CPU SPACE WAIT STATE
+0006 0001FFD4 20042004 SUPR DATA WRITE 32 BIT PORT
+0007 00000078 00040CCC SUPR DATA READ 32 BIT PORT
+0008 0001FFD6 00000000 SUPR DATA WRITE 32 BIT PORT
+0009 0001FFD8 10081008 SUPR DATA WRITE 32 BIT PORT
+0010 00040CCC 00081008 SUPR P6RM READ 8 BIT PORT
+0011 00040CCD 7C081008 SUPR PGRM READ 8 BIT PORT
+0012 00040CCE 07081008 SUPR P6RM READ 8 BIT PORT
+0013 00040CCF 00081008 SUPR PGRM READ 8 BIT PORT
+0014 0001FFDA 00760078 SUPR DATA WRITE 32 BIT PORT

Figure 18 The state listing for interrupt level 6 test.

24

68020 -Timing Navel orms

Maerkers Time X to Trig 12.550 us ITime X to 0 2.120 us

* Accumulate Of 0 to Trig 4.670 us] At XIakr IL

Time/Div I1 .000 u S Delay 3.660 us0

Figure 19Tmn0aeom o nerp ee et

C2 a2I

V. CONCLUSIONS

A. The current implementation of the ECB

The ECB designed and implemented in this thesis can be used as a
state-of-the-art tool for teaching and research. The ECB requires an easy-to-install
firmware for initializing and handling the communication with a control device (see
Reference 1). The result of this effort is a new and powerful microprocessor which is
simple. In comparison with the ECB previously designed by Motorola (using M68000
microprocessor), the new design has the following advantages;

The number of components on the board is less. (10 components - not
including the components for the external I/O device interface. The Motorola
ECB has 61 components).

Availability of the coprocessor which provides a very fast computation
mechnism for floating point operations. It can also be used as a tool for
teaching.

* Higher clock speed (quadrupled to 16 MHz).

0 Only one intelligent terminal is required to run the board. (the Motorola
ECB requires two, one intelligent terminal to assemble and download user
programs and one dumb terminal to run the downloaded program).

It has the following disadvantages.

* Slow rate of response to user commands. (This is due to the fact that the user
commands and the result of these commands have to be passed back and forth
between the board and the intelligent terminal via the 9600 baud rate RS-232
interface. This is a trade-off between the number of components/terminals and
the speed. Transmission or reception of a byte takes 10.4 ms with a 9600
baud rate).

26

* Cache memory has not been enabled. (Disabling the cache memory allowed
us to monitor the external bus activity during development of the ECB and
helped troubleshoot the failures and learn the details of processor
operation during implementation).

B. Future Improvements

The ECB has a provision to install TTL series 74244 and 74245 line drivers/

receivers for an external I/O device (8 bit). All the pads and holes are available to

install the line drivers/receivers. The connection diagram is given in Appendix G.

The byte I/O feature has not been implemented and tested.

27

APPENDIX A: MC68020 SIGNAL DESCRIPTION

This section describes the function of each individual signal or group of signals and

their utilization on the ECB.

1. Function Code Signals (FCO through FC2)

" Three-state outputs.

" Identify the proessor and address space of the current bus cycle, as shown in
Table 2.

Table 2 Function Code Encodings

FC2 FCI FCS ADDRESS SPACE

* S UNDEFINED

* 1 1 USER DATA SPACE

* , 0 USER PROGRAM SPACE

* , , UNDtFINED

, S S UNDEFINED

I S I SUPERVISOR DATA SPACE

I 1 0 SUPERVISOR PROGRAM SPACE

I I I CPU SPACE

" Not utilized on the ECB.

2. Address Bus Sigrals (AO through A31)

" Three state outputs.

" Provide the address, up to 4 gigabytes, for a bus transfer in all address spaces
except for CPU space in which the bus specifies CPU related information.

" On the ECB;

A18, A17, A15 generate chip enable signals for coprocessor and memory.

A19, A15 are used to transmit RS-232 data.

28

A19, A17 are used to receive RS-232 data.

Al, AO are used to generate read/write signals for RAM.

A14 through AO are used to address ROM.

A14 through A2 are used to address RAM.

A31 through A20 are not used.

3. Data Bus Signals (DO through D31)

" Three state inputs/outputs.

" Provides exchange of data between MC68020 and external devices.

" On the ECB;

D31 through D24 are connected to ROM.

D31 through DO are connected to RAM and coprocessor.

4. Transfer Size Signals (SIZO, SIZ1)

* Three state outputs.

* Indicate the remaining number of bytes of an operand to be transfered in a bus
cycle, as shown in Table 3.

Table 3 Transfer Size
Encodings

TRANSFER

SIZE SiZI SIZO

BYTE O

WORD S
3 BYTE I 1

LONG WORD I 6

* On the ECB;

SIZO, SIZI are used to generate read/write signals for RAM.

29

5. External Cycle Start (IECS)

* Output

* In case of a cache miss, indicates the start of an external bus cycle, if validated
by Address Strobe (!AS) later.

" Not utilized on the ECB.

6. Operand Cycle Start (!OCS)

• Output

" Indicates the start of an instruction prefetch or an operand transfer with the same
restrictions as in !ECS.

" Not utilized on the ECB.

7. Read-Modify-Write Cycle (!RMC)

" Three state output
" Indicates an indivisible read modify write cycle on the bus.

" Not utilized on the ECB.

8. Address Strobe (!AS)

" Three state output

" Indicates the availability of valid function code, address, size, and read/write
information on the bus.

" On the ECB;
Used as a synchronization pulse in the generation of DSACKO, DSACK1, and
PHANTOM signals.

9. Data Strobe (IDS)

* Three state output

" In a write cycle, indicates that valid data is available on the data bus.
In a read cycle, signals the slave device to drive the data bus.

• On the ECB;
Used to generate chip select and read/write signals for memory.

30

10. Read/Write (R/W)

* Three state output
* High level on this output indicates a read from an external device,

Low level indicates a write to an external device.

* On the ECB;
Used to generate chip select, read/write and output enable signals for memory.

11. Data Buffer Enable (!DBEN)

9 Three state output

* Provides an enable to external data buffers.
* Not utilized on the ECB.

12. Data Transfer and Size Acknowledge (IDSACKO, IDSACK1)

9 Inputs

& Indicates the port size of the external device and the completion of the data
transfer, as shown in Table 4.

Table 4 DSACK codes.

-SACO1I SACKI BUS CYCLE STATUS

I INSERT WAIT STATES

I 0 8 BIT PORT - CYCLE COMPLETED

* 1 16 BIT PORT - CYCLE COMPLETED

* 0 32 81 PORT - CYCLE COMPLETED

* On the ECB;
Indicate an 8-bit port size for ROM, 32-bit port size for RAM, and coprocessor.

13. Cache Disable (!CDIS)

* Input

* Allows to enable/disable the on-chip cache memory.

* On the ECB;
Pulled down to ground to disable the cache.

31

14. Interrupt Priority Level Signals (IIPLO, IIPL1, IIPL2)

" Inputs

• Indicate the level of the interrupt requested by an external device, as shown in
Table 5.

Table 5 Interrupt Priority and mask levels

LEVEL

TfL TPu T P REQUESIED MASK

I I 1 0 N/A

I I 0I 1 0

I I 2-

1 S 0 3 0-2

* 1 1 4 0-3

* I 0 5 0"4

*) S 1 6 0-5

* I 0 7 4-7

" On the ECB;
Interrupt level 4 (!IPL2) is used for RS-232 communication.
Interrupt level 6 (!IPL2, !IPL1) is used for software abort.

15. Interrupt Pending (!IPEND)

" Output

* Indicates that the active interrupt priority level is higher than the level of the
interrupt mask in the status register or indicates the recognition of a non-
maskable interrupt.

* Not utilized on the ECB.

16. Autovector (!AVEC)

* Input

* When asserted, interrupt vector is generated internally during an interrupt
acknowledge cycle.

* On the ECB;
All interrupts are autovectored.

32

17. Bus Request (IBR)

* Input

* Indicates that some device other than MC68020 has a request to become a bus
master.

* Not utilized on the ECB.

18. Bus Grant (!BG)

* Output

* Indicates that MC68020 will release the bus upon the completion of the current
bus cycle for use by the device issuing a Bus Request.

* Not utilized on the ECB.

19. Bus Grant Acknowledge (IBGACK)

* Input
* Indicates that some device other than MC68020 has become a bus master.
" Not utilized on the ECB.

20. Reset (!RESET)

" Open drain input and output.

" When used as an input, MC68020 enters reset exception processing;
when used as an output, external devices are reset, and no internal action is
taken.

" On the ECB;
Used as an input only to reset the processor during power up or reset by the user.

21. Halt (!HALT)

• Open drain input and output.
* When used as an input, MC68020 halts;

previous bus cycle information is kept on read/write, function code, size
signals and on the address bus.
The data bus stays in high impedance state.
All control signals stay inactive.
When used as an output, signals the external devices that MC68020 has halted.

33

* On the ECB;

Asserted at the same time as the reset input, during power up or reset.

22. Bus Error (!BERR)

* Input

• Indicates a problem with the current bus cycle.

" Not utilized on the ECB.

23.Clock (CLK)

" TTL-compatible input

• On the ECB;
16 MHz clock is applied to this input.

34

Table 6 MC68020 AC Electrical Characteristics. (Copied from Reference 2)
MC680MRC12 MC6SO2ORCIS

Num Characteristic Symbol Min Max Min Max Unit
6 Clock High to Address/FCSizelWR Valid 1 0 40 0 30 ns.

6A Clock High to En. OC Asserted 1 0 30 0 20 n
7 Clock High to Address. Data, FC. f'M'C. Size

High Impederi, ...A. 0 so 0 eO ns

S Clock High to Address/FC/Size/RMC Invalid tHAZn 0 - 0 - ns
9 Clock Low to W. M Asserted tCLSA 3 40 3 30 ns

9A T A to U Assertion (Read) (Skew) tSTSA -20 20 -15 15 n$
10 T Width Asserted tECSA 25 - 20 - ns
10A Off Width Asserted OCSA 25 - 20 - ns
1I1 Addres/FC/Size/RfM Valid to r land 5f Asserted

Read) tAVSA 20 '-- 15 - ns
12 Clock Low to X1, V Negated tCLSN 0 40 0 30 ns

12A Clock Low to E'/M Negated tCLEN 0 40 0 30 ns
13 W. D3 Negated to Address. FC. Size Invalid tSNAI, 20 - 15 - ns
14 Aland D Read) Width Asserted tSWA 120 - 100 - ns

1.4A U9 Width Asserted Write t W W 50 - 40 - ns
15 T-. W idth Negated tSN 5 - 40 - ns
16 Clock High to n, 1 . RW, .BEN High Impedance t*5S - so - 60 ns

17*3-- . b Negated to R/W High t*. N 20 - 15 - ns
18 Clock High to R/W High tCHRH 0 40 0 30 ns
2 Clock High to R/W Low tCHRL 0 40 0 30 ns

216 R/W High to - Asserted tAA . 20 - 15 - ns
2 R/W Low to 0 Asserted (Write) tRASA 90 - 70 - ns
23 Clock High to Data Out Valid -- Tam - 40 - 30 ns

25
6

M Negated to Date Out Invalid tSNDl 20 - 15 - ns
260 Date Out Valid to 0 Asserted (Write) IDVSA 20 - 15 - ns
27 Date-In Valid to Clock Low (Data Setup) tDICL 10 - 5 - ns

27A Late BR/HALT Asserted to Clock Low Setup Time tBELC L .25 - 20 - Ps
28 AS, D Negated to DSACKx. 9W, HALT. AV-

Negated ISNDN 0 110 0 90 ns
29 U Negated to Date-In Invalid (Data-In Hold Time) tSNDI 0 - 0 - ns

29A Negated to Data-In (High Impedance) tSNDI - 80 - 60 ns
31 DiACKx Asserted to Data-In Valid tDADI - 60 - 50 ns

31A 3 OSACKx Asserted to DSACKx Valid tDADV - 20 - 15 ns
(5A-- Asserted Skew)

32 AM Input Transition Time tH~ d - 2.5 - 2.5 CIk Per
33 Clock Low to n Asserted tCLBA 0 40 0 30 ns
34 Clock LOW to 87 Negated ICLBN 0 40 0 30 ns
35 VN Asserted to U' Asserted (TIU1 Not Asserted) tBfAGA 1.5 35 .1.5 3.5 Clk Per
37 BGACK Asserted to U Negated •&AN 1.5 3.5 1.5 3.5 CIk Per
39 'Width Negated I - 120 - 90 - ns

39A 0 Width Asserted tGA 120 - 90 - ns
40 Clock High to DBEN Asserted (Read tCHDAR 0 • 40 0 30 ns
41 ,lock Low to UBE Negated (Read) tCLDNR 0 40 0 30 ns
42 Clock Low to DEM Asserted (Write) tCLDAW 0 40 0 30 ns
43 Clock High to ' Negated (Write) tCHDNW 0 40 0 30 ns
446 R/W Low to MEN Asserted (Write) tRADA 20 - 15 - ns
455 DBEN Width Assertedi . Read tDA S0 - 60 - ns

Write _ 60 - 120 - ns
46 R/W Width Asserted (Write'or Read) tRWA 180 - 150 - ns

47a Asynchronous Input Setup Time .tAIST 10 - 5 - ns
47b Asynchronous Input Hold Time tAIHT 20 - 15 - ns

4 A Asserted to IM. HALT Asserted tDARA - 35 - 30 ns
53 Data Out Hold from Clock High .DOCH 0 - 0 - ns
55 R/W Asserted to Data Bus Impedance Change tRADC 40 - 40 -
56 RESET Pulse Width (Reset Instruction) I gpW 512 - 512 - Clks
57 8ERR Negated to HALT Negated (Rerun) tBNHN 0 -

35

CIK

AO-A31

FCO- PC2

SIZE

R/W0

OSAC16

OSAC=

BEAR

36

soSO 1 S2 S3 S4 S5

FCO-FC2

SIZE

ECS

--
DAS

00-D31 - ,

45 Note 5

,448

Figure 21 MC68020 Write Cycle Timning Diagramn. (Copied from Reference 2)

37

APPENDIX B: MC68881 SIGNAL DESCRIPTION

This section describes the function of each individual signal and its

utilization on the ECB.

1. Address Bus Signals (AO through A4)

* Inputs.

" Are used by the main processor to access any coprocessor interface register in the
CPU address space. AO is used to configure the data bus size.

" On the ECB;

AO is connected to high in order to configure a 32 bit bus connection.

Al through A4 are connected to corresponding address bus pins of MC68020.

2. Data Bus Signals (DO through D31)

" Three state inputs/outputs.

" Provides exchange of data between MC68881 and the main processor.

" On the ECB;

D31 through DO are connected to corresponding data bus pins of
the MC68020.

3. Address Strobe (1AS)

" Input

• Indicates the availability of valid address, chip select and read/write signals.

" On the ECB;

is directly connected to !AS pin of MC68020.

38

4. Size Signal (ISIZE)

" Input.

" Used in conjunction with AO configure the data bus size as follows:

Table 7 MC68881 Data Bus
Size Encoding.

Af SIZE DATA BUS SIZE

x 6 5 BIT

o 1 16 sit
32 BIT

" On the ECB;

is connected to high in order to configure a 32 bit bus connection.

5. Chip Select (!CS)

" Input

" Enables the main processor access to the coprocessor interface registers.

" On the ECB;

is generated by the address bits A18, A17 and A15.

6. Read/Write (R!W)

" Input

* Indicates the direction of bus activity.
Low level: a read from MC68881.
High level: a write to MC68881.

" On the ECB;

is directly connected to R/1W output of MC68020.

39

7. Data Strobe (IDS)

* Input
" Indicates a valid data on the data bus, during a write cycle.

* On the ECB;
is directly connected to !DS pin of MC68020.

8. Data Size And Acknowledge (!DSACKO, IDSACK1)

" Three state output
" Indicates the port size of the coprocessor interface and the completion of the bus

cycle to the main processor.
" On the ECB;

are directly connected to !DSACKO and !DSACK1 pins of MC68020.
They report a port size of 32 bits to the main processor.

9. Reset (!RESET)

" Input.
" Initializes the floating point data registers and clears the floating point control,

status and instruction address registers.
* On the ECB;

is connected to the same reset circuit as MC68020.

10. Sense Device (!SENSE)

* Output.

" Can be utilized as an indication to the presence of MC68881.
" Not utilized on the ECB.

11. Clock (CLK)

" TTL compatible input

" On the ECB;
MC68020 clock is applied to this input.

40

Table 8 MC68881 AC Electrical Characteristics. (Copied from Reference 3)

McSSS~lBRc12 MC$SSslRCIS
No. Characterltlc Symbol - - - - Unit

Mlin Max Mmn Ma,

6 Addres Valid to Aserted (Note 5) tAVASL 20 - 15 - no

Sn Addres Valid to US Asseted (Read) (Noe) IAVRDO" 20 - 15 - no

Sb Aden Valid to Asered (Write) (Note 5) IAVWDSL 65 - - ns

7 X9Negated to Addresl Invaid (Note 6) iASHA 15 - 10 - na

7a D§ Negated to Address Invalid (Note 6) iDS 15 -I 10 - no

T CAssreedtoU Aserted or J'Aaerted o ICVASL 0 - 0 - nsZ§Aseed (We e)
aUS Aseed to U- Asserted or B)5 Aserted to 1

CVRDSI 0 - 0 - n

I C Asswlod (Read) (Nola 9)

8b CS Asseled to N Asserted (Write) tCVWDSL 45 - - ns

9 AS Negated to CS Negaled tASHC X 10 - 10 - ns

9a DS Negated to CS Negated IDSHCX 10 - 10 - ns

10 R1W High to X§ Asserted (Read) tRVASL 20 - 15 -Is n

t0& RW High to S Asseed (Read) tRVDSL 20 - 15 - n fl

l0tb R Low to ' Asserted (Wrile) IRLSL 45 - 35 ns

1 1 ASj Negated to RW Low (Read) or
1
ASHRX 15 - 10 - l

AS Negated to RfW High (Write)

Ila U 5"Negaed to RQLow (Read) or tDSH X IS - 10 - fS
DS Negated to RWN High (Write)

12 US Width Assered (Write) IDSL 50 - 40 - no

13 DS Width Negated tDSH 50 - 40 - ns

13a US Negated toASAsserted (Note 4) IDSHASL AO - 30 - ns

14 Us Us Asserted to Data-Out Valid (Read) (Note 2) tDSLDO - 110 - 80 ns

15 US Negated to Data-Out Invalid (Read) IDSHDO 0 - 0 - ns

16 S Negated to Data-OtA High Impedance (Read) tDSHDZ - 70 - 50 no

17 Data-In Valid to US Asserted (Write) IDIDSL 20 - 15 - no

it DS Negated to ODatan Invaid (Wke) tDSHN 20 - Is - no

19 FTART Tte to SACKO and DS As erted tSLDAL - 70 - 0 n
(Notes 2.10)

19a D'SACKO Asserted toDSACKI Aerted(Skew)
t

DADAS -20 20 -15 15 n

(Note 7)

20 DSACKO or DSACKI Asserted to Data-Out Valid tDALDO - 60 - 50 ns
(Read)

21 SFTWART False to SAC O and OS-ACKI Negated ISHDAH - 70 - 50 ns

(Note 10)

22 START Fake to U-ACK0 and DSACKI High ISJDA Z - 90 - 70 nl
Impedance (Note 10)

23 START True to Clock High (Synchronous Read) IDSlCH 0 - 0 - n
(Not" 3, 10)

24 Clok Low to Data-OA Vaid (Synchronous Read) ICU)O - 140 - 105 n
(NWe 3)

2S I T"O True to Data-Out Valid IDSSLDO 1.5 140+ 1.5 105. ns

(Synchronous Reed) (Notes 3. 10, and 11) Clke 2.5 Clks Clks 2.5 Clks

26 Clock Low to SACK and MOM Asserted ICLDAL - 100 - 75 ne

(Synchronous Reed) (Note 3)
27 S TARTrue to OS"ACKO aid Assred tOSLDA 1.5 100, 1.5 75* n

(Synchronoue Read) (Notes 3, 10, and 11) ____ 12-5 Clks COte 2.5 0Cks

41

AO-A4

42

AO-A4

6b 7

6 7a

R/W

103

ST-ART1

DSACKO -

00-031

Figure 23 MC68881 Write Cycle Timing Diagram (Copied from Reference 3)

43

APPENDIX C: MC68020 BUS OPERATION

This section describes the basic bus operation of MC68020.

1. Operand Transfers
Unlike the old M68000 family members, there is no restriction on the alignment of

data in memory, but the instruction alignment on word boundaries is enforced in order

to obtain maximum efficiency. MC68020 can transfer byte, word, and longword
operands to/from 8, 16, and 32-bit data ports signalled by the data transfer and size

acknowlodge (!DSACKO, !DSACK1) inputs. A 32-bit port uses all data lines D31
through DO. Communication with a 16-bit port is provided over D31 through D16, and
with an 8-bit port over D31 through D24. It takes MC68020 one bus cycle to fetch a

long word from a 32-bit port, two bus cycles from a 16-bit port and four bus cycles

from an 8-bit port. The bytes of an operand of any size can be routed to any byte
position of 32-bit data bus, according to the size outputs and the address lines AO and
Al. By the use of this scheme, the operand alignment restriction is eliminated. Table 9
shows how the bytes of an operand is multiplexed on the data bus.

Table 9 MC68020 External Data Bus Multiplexing.

TRANSFER SIZE f ADDRESS OPERAND POSITION

SIZE SIZI SI I AR 031:024 023:DI6 015:D8 07-DI

BYTE 1 X X OP3 OP3 OP3 OP3

1 a X 6 OP2 OP3 OP2 OP3
lORD - F

I X I OP2 OP2 OP3 OP2

I 0 S OPI OP2 OP3 cPO

I B 0 I OPI OP I 0P2 OP3

I i I S OPI OP2 OPT OP2

t I 1 I OPI OPt OP2 OPI

* 6 0 0 OPO OPI OP2 OP3
* 0 6 1 opo opo opt op2

LONG WORDO ____ ____ ___ ___
* 0 W I OPt Opt OPO OPt

I * 0 I OPt OPO OPt OPS

The operand representation and size/offset encodings for external data bus multiplexing

44

are shown in Figure 24.

31 0

15°op.OP oO p P3

IS S

OPERAND.REPRESENTATION FOR EXTERNAL DATA BUS MULTIPLEXING

TRANSFER
SIZE SIZI size OFFSET Al A@
BYTE I I BYTE 1 O

WORD I I W ORD I I

3-BYTE 1 1 3 BYTE I I

LONG WORD 4 1 1 LONG WORD I I

SIZE AND OFFSET ENCODING FOR EXTERNAL DATA BUS MULTIPLEXING

Figure 24 Operand representation and size/offset encodings

The following are the examples of long word transfers to a 16-bit, and to an S-bit data

bus.

BUS CYCLE StZI SI -A) At S S O D ATA BUS D6

IT E I I I_ OPt oei

OP2 OP3

Figure 25 Long word transfer to 16-bit data bus

BUS CYCLE SIZi SIZO Al At OSACKI Tr1 AT 031 DATA BUS 024

1 Opt

2 1 1 1 1 4OPI

3 I ° I 1 I P OP2

4 1 F, I E 1 1 OP3

Figure 26 Long word transfer to 8-bit data bus

45

An address error exception occurs when an instruction fetch at an odd address is
attempted, although no restriction is imposed on data alignment. The next two figures

shows the misaligned longword/word transfers to 32/16 bit buses, respectively.

BUS CYCLE SII SuZI A2 At A, UNCUT OSA Oil DATA BUS O0

I 2 I I I I I I I 0PI OP2 OP] XX

Figure 27 Misaligned longword transfer to 32-bit data bus

BUS CYCLE SiZl SiZI A2 Al At OTACKI T ACI1 D31 DATA BUS 016

I I I I I II I XXX OP2

2 B I 1 1 1 1 1 OP3 XXX

Figure 28 Misaligned word transfer to 16-bit data bus

2. Bus Operation

9 Read Cycle: Data is received from external device in accordance with the
following sequence of events:

MC68020 External Device

Sets Read/Write to Read
Puts Address onto address bus
Drives Size outputs
Asserts External Cycle Start/

Operand Cycle Start
Asserts Address Strobe
Asserts Data Strobe
Asserts Data Buffer Enable

Decodes address
Puts data onto data bus
Asserts Data Transfer and

Size Acknowledge

Latches data
Negates Data Strobe
Negates Address Strobe
Negates Data Buffer Enable

46

Removes Data from the bus
Negates Data Transfer and

Size Acknowledge

Starts new bus cycle

Write Cycle: Data is sent to external device in accordance with the following

sequence of events:

MC68020 External Device

Sets Read/Write to Write
Drives Function Codes
Puts Address onto address bus
Drives Size outputs
Asserts External Cycle Start/

Operand Cycle Start
Asserts Address Strobe
Asserts Data Strobe
Asserts Data Buffer Enable

Decodes address
Latches data from data bus
Asserts Data Transfer and

Size Acknowledge

Negates Data Strobe
Negates Address Strobe
Removes Data from data bus
Negates Data Buffer Enable

Negates Data Transfer and
Size Acknowledge

Starts new bus cycle

Read-Modify-Write Cycle: During this cycle, data is read from memory, it is
modified in ALU and written back to the same address. This bus cycle is
indivisible, that is, MC68020 does not release the bus until the whole cycle is
completed. This feature is utilized in multi processesing by the instructions Test
And Set (TAS) and Compare And Swap (CAS, CAS2). For detailed explanation,
refer to Reference 2.

47

3. Interrupt Operation

MC68020 has seven interrupt levels of which level seven is the highest. The level

of requested interrupt is signalled to the processor via interrupt priority level signals
IPL2-IPLO. Level zero (IPL2-IPLO = HHH) means no interrupt requested. If the level

of requested interrupt is between one and six, the interrupt level is compared against

the interrupt mask level in the status register. If the requested interrupt level is less

than or equal to the mask level, the interrupt is ignored. Otherwise the interrupt is

processed. The level seven interrupts are non-maskable; that is, they are immediately
processed regardless of the interrupt mask level in the status register.

The following two rules guarantee the processing of an interrupt:

* Except for the level seven interrupt, the interrupt level should be higher than the
interrupt mask level in the status register.

" IPLO through IPL2 should stay at the requested level, until the interrupt is
acknowledged by MC68020.

It is also possible that an interrupt request of a duration as short as two clock cycles
can be processed. A recognized interrupt is made pending and is processed at the next

instruction boundary, unless a higher level interrupt is valid. After the interrupt is

made pending, the processor first determines the starting location of the interrupt
handling rout.- pointed by the interrupt vector number. This vector number can be

generated internally or can be provided by the interrupt requesting device through the

data bus in the interrupt acknowledge cycle.

The following is the flowchart for Interrupt Acknowledge Sequence;

Interrupt Acknowledge Sequence

MC68020 DEVICE

Requests interrupt
Compares the requested interrupt

level with the mask level.
Sets Read/Write output to Read
Sets Function Code to 7 (CPU Space)
Sets Al-A3 to the recognized level.
Sets Size outputs to Byte.
Asserts Address Strobe and Data Strobe

Either
Places vector number on data bus.
Asserts Data Transfer and

Size Acknowledge.

48

Or
Asserts IAVEC for internal generation
of interrupt vector number.

Gets the interrupt vector number.
Negates Address Strobe and Data Strobe.

Negates Data Transfer and
Size Acknowledge, if asserted.

Processes the interrupt.

In case of a spurious interrupt, that is, an interrupt request is recognized, but

IDSACKX or IAVEC signal is not asserted by the external device, then the external

circuit should assert IBERR signal. This terminates the interrupt vector acqusition and
causes MC68020 to fetch spurious interrupt vector and to start exception processing.

4. Breakpoint Acknowledge Cycle

This cycle is initiated by the execution of a breakpoint instruction during which

MC68020 reads a word from CPU space. Upon the termination of the cycle by
IDSACKx, the processor replaces the breakpoint instruction by the data read from the

data bus and continue to execute that instruction. If the cycle is terminated by IBERR,

then the processor continues with processing an illegal instruction exception.

5. Coprocessor Operations

MC68020 communicates with the coprocessor by performing CPU space accesses.
During a CPU access, address bus contains the access information, instead of an

address. The lines A16 through A19 contain 0010 to specify coprocessor operatioa, and
the coprocessor ID number to be accessed is encoded on the lines A13 through A15.
The lines AO through A5 indicate the coprocessor interface register to be accessed.

The coprocessor ID number 0 is belong to MC68020 memory management unit.

6. Bus Error Operation

MC68020 is provided with a Bus Error input which is used to terminate the current
bus cycle, in case of a handshake failure. The signal -r this input should be generated

externally, after the maximum time period between the assertion of !AS and IDSACKx.
Bus error input is also used to suspend the execution of an instruction, if an invalid

memory access is detected.

49

MC68020 may start to process the bus error exception immediately, in case of a data

space access, or may defer processing it, if the bus error occurs during an instruction

prefetch. In the second case, the bus error exception will occur, when the faulted data

is actually to be executed.

7. Retry Operation

If both IBERR and !HALT inputs are asserted externally, MC68020 will rerun the

previous bus cycle after the negation of these two signals. There is no restriction on the

type of bus cycle to be retried.

8. Halt Operation

MC68020 will stop all external bus activity when the !HALT input is asserted. The

internal operation of the processor is not affected by the !HALT input. For example, a

program stored in the cache memory will continue to run regardless of the HALT

input. Stepping through the processor operation one bus cycle at a time is also possible

by asserting the !HALT input when the processor starts a bus cycle. As long as the

!HALT input remains asserted, the current bus cycle will be completed, but the next

cycle will not start. In order to step through the next bus cycle, the !HALT input

should be negated and then asserted again after the bus cycle starts.

9. Double Bus Fault

Double bus fault is an address or bus error which occurs during the exception

processing for an address error, bus error, or reset exception. When a double bus fault

occurs, the processor halts and the HALT line is asserted. Then the processor can only

be started by an external reset.

10. Reset Operation

The reset operation is bidirectional, the processor can reset the external devices, or

the external circuitry can reset the processor. hi order to reset the processor, the

IRESET input should be asserted at least 100 ms. Then the processor loads the

interrupt stack pointer and the program counter from the long-word addresses

$00000000 and $00000004 respectively. Trace is disabled, privileged states is set to

supervisor-interrupt state by clearing/setting the relevant bits in the status register. The

vector base register is set to $00000000 and the cache is disabled by clearing the cache

enable bit in the cache control register. The other registers remain unaffected.

50

The processor resets the external devices by executing a RESET instruction, which
asserts the IRESET line for 512 clock cycles. Nothing inside the processor is affected

by executing the RESET instruction.

51

APPENDIX D: PROCESSING STATES OF MC68020

This section describes the operation of the processor in two subsections, the
privilege states and the exception processing.

1. Privilege States

MC68020 has two levels of privilege, the supervisor level and the user level. The

supervisor level has a higher privilege than the user level in that the user level is not

allowed to access all the program and data areas and to execute all the instructions.

This separation of privileges provides security in the system.

a. Supervisor States

The S bit in the status register determines the privilege level of the processor.
When the S bit is set, the processor runs in supervisor state and can execute all the

instructions. The M bit in the status register allows the separation of the supervisor

stack for user and interrupt-associated tasks. This separation increases efficiency in

multi-tasking environment. When the M bit is set, the system stack pointer references

the master stack pointer, otherwise the interrupt stack pointer is used as the system

stack pointer. Referencing the system stack pointer is the only operation affected by the
status of the M bit. After reset, the S bit is set and the M bit is cleared. If the M bit is

already set and an interrupt occurs, then the processor saves the status of the M bit and

clears it to process the exception for interrupt. When processor runs in the supervisor

state, the S and M bits can be manipulated by the instructions that modify the status

register. The supervisor state i.; encoded as 5 (data) and 6 (program) on the function

code pins. By executing the instructions RTE, MOVE to SR, ANDI to SR and EORI to
SR, the processor can switch from the supervisor state to the user state.

b. User State

When the S bit in the status register is set to zero, MC68020 runs in the user state
in which the instructions that have an impact on the system are not allowed to execute.

In the user state, the system stack pointer references the user stack pointer. The user

52

state is encoded as 1 (data) and 2 (program) on the function code pins. The exception

processing is the only way to switch from the user state to the supervisor state.

2. Exception Processing

a. General Information
An exception can be generated internally by instructions, address errors,

tracing or breakpoints; it can also be generated externally by interrupts, bus errors, reset

or errors detected by coprocessor. The following are the four steps to process an

exception as explained in the section "MC68020 Overview":

" Make an internal copy and set/clear the required bits of the status register for

exception processing.

" Determine the exception vector.

" Save the current processor context on the active supervisor stack.

" Get the new processor context and proceed with the instruction processing.

The internal copy of the status register is saved on the exception stack frame

created in order to save the current processor context. Depending on the type of the

exception, MC68020 can create exception stack frames in six different formats. All of

the six frames have at least four fields that contain

" Status Register

* Program Counter

" Format of the frame

" Vector Offset

Some exception stack frames have another field which contains additional processor

information. This information can be 2, 6, 12 or 42 words in length. Detailed

information on the exception stack frames can be found at the end of this appendix.

After saving the current content of status register, the processor is switched to the

supervisor state by setting the S bit. The trace bits are cleared in order to prevent the

exception handler from being hindered by tracing.

53

In the second step, the MC68020 determines the exception vector number. The
vector number is obtained by a read from CPU space for interrupts (if the interrupt is

not autovectored). The coprocessor provides the vector number in exception primitive
response, if it detects an exception. The vector numbers for all other exceptions are

generated internally.

In the third step, if the exception is not reset, an exception stack frame is created

on the active supervisor stack and the current processor context is saved in this frame.
With the M bit set, if the exception is an interrupt, then the MC68020 clears the M bit

and creates another stack frame on the .2terrupt stack.

In the last step, the exception vector offset is calculated by multiplying the

exception vector number by four (number of bytes in a long-word). The calculated

exception vector offset is then added to the contents of the vector base register (

default value after reset is 00000000 Hex) to locate the exception vector address. The

contents of the exception vector address is loaded into the program counter (for reset

exception, the interrupt stack pointer is also loaded from the exception vector address)

and the instruction at the address pointed by the program counter is fetched and the

instruction execution resumes. All the exceptions are grouped and are given priorities to

determine the order in which simultaneous exceptions will be handled. The exception

groups and the level of priorities are as follows;

" Group 0: Priority 0 Reset

" Group 1: Priority 1 Address Error
Priority 2 Bus Error

* Group 2: Priority 3 BKPT#n
CALLM
CHK
CHK2
cp Mid-Instruction
cp Protocol Violation
cp TRAPcc
Divide-By-Zero
RTE
RTM
TRAP #n
TRAPV

54

" Group 3: Priority 4 Illegal instruction
Line A
Unimplemented Line F
Privilege violation
cp Pre-Instruction

" Group 4: Priority 5 cp Post-Instruction
Priority 6 Trace
Priority 7 Interrupt

b. The sources of exceptions

(1) Reset

This is the highest priority exception which initializes the system and recovers the

system from a catastrophic failure. The current process can not be recovered after a

reset. When an external reset signal is applied to the !RESET input, MC68020 takes

the following steps;

" The status register:
Trace bits TO, TI are cleared (tracing disabled).
S bit is set, M bit is cleared (supervisor interrupt state).
Interrupt mask level is set to level seven.

" The vector base register:
is initialized to 00000000 Hex.

* The cache control register:
is initialized to 00000000 Hex.

* The vector number:
is internally generated to point the reset exception vector at zero offset in the
supervisor program space. The length of reset exception vector is two long words,
the first of which holds the initial value for interrupt stack pointer and the second
the initial value for the program counter.

" Program execution starts with the instruction fetched from the address pointed by
the program counter.

When a RESET instruction is executed, no internal registers of MC68020 are affected,

only the !RESET line is asserted for 512 clock cycle to reset the external devices. The

program execution continues with the next instruction.

(2) Address Error

When an attempt is made to fetch an instruction from an odd address, then the

address error exception occurs, and the bus cycle is not executed. If the occurance of

55

the address error coincides with the processing of a bus error, address error or reset

exception, then the processor halts.

(3) Bus Error

When the !BERR input is asserted by the external logic during a bus cycle, then

the current bus cycle is aborted. The exception processing begins immediately if the

aborted bus cycle is a data space access. The processor defers the exception processing

until the prefetched instruction is actually needed, if the aborted cycle is an instruction

prefetch. Depending on when the bus error occurs during a bus cycle, MC68020 creates

one of two exception stack frames for the bus error. If the bus error occurs in the

middle of instruction execution, then the larger stack frame (Format B Hex) is required,

otherwise exception stack frame in Format A Hex is created. As in the address error, if

the bus error takes place during the exception processing for an address error, bus error,

reset, or RTE instruction execution, the MC68020 halts.

(4) Instruction Trap

The detection of an abnormal condition during instruction execution or executing

some specific instructions cause a trap. The exception vector number is generated

internally for all instruction traps (the TRAP #n instruction has part of the vector

number in itself). The instructions that specifically generate a trap are as follows:

" TRAP #n : When executed, forces an exception. By using this instruction, user
programs can make system calls.

" TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2 : An exception is forced by these
instructions, if the user program detects a run-time error.

" DIVS, DIVU : If a division operation with a zero divisor is attempted, these
two instructions generate a exception.

(5) Breakpoint

Unlike the MC68000 and MC68008, inserting an illegal instruction into the

breakpoint address and looking for a fetch from an illegal instruction exception vector

address is not a reliable way to determine if the breakpoint has been reached, in a

MC68020 system. This is due to the allowance of multiple exception vector tables by

using the vector base register. Instead, the opcodes 4848 Hex through 484F Hex are

used as breakpoint instructions. By using breakpoints, MC68020 can be used in a

hardware emulator, and the execution of a program in the on-chip cache memory can

56

be monitored by external hardware.

(6) Format Error

The MC68020 checks the format of control data, as well as the validity of the

prefetched instruction. The control data checked by the processor include the option and

type fields in the module descriptor for CALLM and RTM, the format of the stack for

RTE and RTM, the format of the coprocessor save area for cpRESTORE. If the format

check of the control data fails, then the MC68020 generates a format error exception,

and creates a short format frame (Format 0 Hex). The program counter value saved on

the satck frame points to the address of the instruction that detected the format error.

(7) Illegal or Unimplemented Instruction

Any word bit pattern that does not match with the bit pattern of the first word of a

legal MC68020 instruction is called illegal instruction. Illegal instructions also include

the MOVEC instruction, if it has an undefined register specification in the first

extension word. There are two types of unimplemented instructions, A-line opcodes

and F-line opcodes, where A and F correspond to the numbers that bits 15 through 12

of the opcode represent in hexadecimal form. F-line opcodes are used for coprocessor

instructions. megal instructions and unimplemented instructions have distinct exception

vectors which allows the emulation of unimplemented instructions more efficiently.

(8) Privilege Violation

An attempt to execute one of the following instructions in the user privilege state

will cause an exception;

o ANDI to SR MOVE USP cpSAVE
EORI to SR MOVEC cpRESTORE
ORI to SR MOVES STOP
MOVE to SR RESET
MOVE from SR RTE

Also it is possible that an exception will occur when the coprocessor requests a

privilege check, while MC68020 is in the user state.

57

Both the next instruction address and the address of the instruction that caused

privilege violation are saved on the exception stack frame.

(9) Tracing

By setting the trace bits in the status register, programs can be traced on

instruction-by-instruction basis. The MC68020 can also trace the instructions that

change the sequential flow of the program. The trace bits indicate the type of tracing as

shown in Table 10:

Table 10 Trace Bit
Encoding.

TI ISI TRACE

0 0 NO TRACE

0 1 TRACE BRANCH

I I TRACE ALL

I I UNOEFINED

Tracing allows a debugger program, like the one written in Reference 1, to monitor

the execution of a test program.

In no trace mode, the instructions are executed normally. When the trace bits are

set to trace branch mode, the instructions that change the sequential flow of the

program will be traced. These instructions include all branches, jumps, instruction traps,

returns and those that affect the status register contents. If trace bits are set to trace all

mode, every instruction will be traced. The exception processing for a trace starts after

the completion of the traced instruction and before the execution of next instruction.

For trace exception processing, MC68020 creates a stack frame in Format 2 Hex and

clears the trace bits. Both the address of the next instruction and the address of the

traced instruction are saved on the stack frame. If the STOP instruction begins the

execution, when TI bit is set, then the stop instruction will not take effect.

(10) Interrupts

The interrupt mask level in the status register determines whether an interrupt will

be processed or ignored. If the requested interrupt has a higher priority level than the

interrupt mask level, then the interrupt is made pending and the processing begins at

the next instruction boundary, otherwise the interrupt is ignored. The level seven

58

interrupt is an exception to this case, it can not be inhibited by the interrupt mask

level.
During an interrupt acknowledge cycle, the level of the interrupt being acknowledged is

put on the address lines A1-A3, and if the interrupt is not autovectored, the vector

number is fetched from the external device. If the interrupt is autovectored, the

MC68020 internally generates a vector number which corresponds to the level of the

interrupt. If a bus error is detected, then the spurious interrupt vector is fetched.

(11) Return From Exception

The Return From Exception (RTE) instruction is used to return to the processor

context prior to the exception, whenever it is possible. The processor examines the

stack frame created for the exception in order to check the validity of the frame and to

determine the type of context restoration. In case of a format or bus error during the

execution of the RTE instruction, another stack frame is created above the frame which
was going to be used.

c. Exception Stack Frames

Depending on the type of the exception, the MC68020 creates one of six

stack frames which are described in this section.

(1) Normal Four Word Stack Frame (Format $0)

" Created by

Interrupts
Format Errors
TRAP #n Instructions
Illegal and Unimplemented Instructions
Privilege Violations
Coprocessor pre-instruction Exceptions

" The format of the frame (see Figure 29);

SP = Status Register
SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0000 Hex) + Vector Offset (12 Bits)

59

15 12 ii 1

Sp STATUS REGISTER

SP#2 PROGRAM COUNTER

SP.6 I I I I VECTOR OFFSET

Figure 29 Normal four-word stack frame

* The program counter value (SP+02 Hex) is the address of the instruction that
caused the exception or the address of the next instruction.

(2) Throwaway Four-Word Stack Frame (Format $1)
" Created if the supervisor state is changed to interrupt state from master state (M

bit is cleared) during exception processing for an interrupt.
* The format of the frame (see Figure 30):

SP = Status Register
SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0001 Hex) + Vector Offset (12 Bits)

15 12 11 9
SP STATUS REGISTER

SP.2. PROGRAM COUNTER

SP6 0 1 e I VECTOR OFFSET

Figure 30 Throwaway four-word stack frame

* The program counter value (SP+02 Hex) might be the address of the instruction
that caused the exception, the address of the next instruction, or coprocessor mid-
instruction stack frame.

(3) Normal Six Word Stack Frame (Format $2)

* Created by

Coprocessor post-instruction exceptions
CHK and CHK2 instructions
cpTRAPcc, TRAPcc and TRAPV instructions
Trace

60

Zero divide

" The format of the frame (see Figure 31):

SP = Status Register
SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0001 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Instruction Address (32 Bits)

is 12 IT

SP STATUS REGISTER

SP,2 SP-2 - PROGRAM COUNTER

$P,6 0 1 1 1 VECTOR OFFSET

speINSTRUCTION AORSS

Figure 31 Normal six-word stack frame

" The program counter value (SP+02 Hex) is the address of the next instruction, or
the address to be returned by RTE instruction.

" The instruction address value is the address of the instruction that caused the
exception.

(4) Coprocessor Mid-instruction Exception Stack Frame (Format $9)

" Created when

"Take mid-instruction exception" coprocessor primitive is read while the
MC68020 is processing a coprocessor instruction.

The MC68020 detects a protocol violation during a coprocessor instruction
processing.

"Null, come again with interrupts allowed" primitive is read, and the MC68020
detects a pending interrupt.

" The format of the frame (see Figure 32):

SP = Status Register
SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0010 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Instruction Address (32 Bits)
SP + OC Hex = Internal Registers (4 Words)

61

is 1211 1

SP STATUS REMISTER

SP4162 PROGRAM COUNTER

SP.S6 1 0 1 I VECTOR OFFSET

Sp|W INSTRUCTION AOORESS

SP416C

INTERNAL REGISTERS

SP #Ii2

Figure 32 Coprocessor mid-instruction exception
stack frame

" The program counter value (SP+02 Hex) is the address of the next instruction.

" The instruction address value is the address of the instruction that caused the
exception.

(5) Short Bus Cycle Stack Frame (Format $A)

" Created when

the MC68020 detects a bus cycle fault, and recognizes it is at an instruction
boundary.

" The format of the frame (see Figure 33):

SP = Status Register
SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0101 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Internal Register
SP + 0A Hex = Special Status Word
SP + OC Hex = Instruction Pipe Stage C
SP + OE Hex = Instruction Pipe Stage B
SP + 10 Hex = Data Cycle Fault Address
SP + 14 Hex = Internal Register
SP + 16 Hex = Internal Register
SP + 18 Hex = Data Output Buffer
SP + IC Hex = Internal Register
SP + IE Hex = Internal Register

62

15 12 11 1

SP STATUS REGISTER
SP-102

PROGRAM COUNTER

SP#1O6 ! 0 1 O VECTOR OFFSET

SPd188 INTERNAL REGISTER

SP#11A SPECIAL STATUS TORO

SP.$OC INSTRUCTION PIPE STAGE C

SP#11E INSTRUCTION PIPE STAGE B

S l DATA CYCLE FAULT ADDRESS

SP#114 INTERNAL REGISTE2

SP#|16 INTERNAL REGISTER

Spills DATA OUTPUT BUFFER

SP.1C INTERNAL REGISTER

SP.$IE INTERNAL REGISTER

Figure 33 Short bus cycle fault stack frame

9 The program counter value (SP+02 Hex) is the address of the next instruction.

(6) Long Bus Cycle Stack Frame (Format B Hex)

* Created when

the MC68020 detects a bus cycle fault, and recognizes it is not at an instruction
boundary.

* The format of the frame (see Figure 34):

SP = Status Register (Word)
SP + 02 Hex = Program Counter (2 Words)
SP + 06 Hex = Format Number (0101 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Internal Register (Word)
SP + OA Hex = Special Status Word (Word)
SP + OC Hex = Instruction Pipe Stage C (Word)
SP + OE Hex = Instruction Pipe Stage B (Word)
SP + 10 Hex = Data Cycle Fault Address (2 Words)
SP + 14 Hex = Internal Registers (2 Words)
SP + 18 Hex = Data Output Buffer (2 Words)
SP + IC Hex = Internal Registers (4 Words)
SP + 24 Hex = Stage B Address (2 Words)
SP + 28 Hex = Internal Registers (2 Words)
SP + 2C Hex = Data Input Buffer (2 Words)
SP + 30 Hex = Internal Registers (22 Words)

63

* IS 1? II O

SP STATUS REGISTER

SP*2"
PROGRAM COUNTER

SP4106 I I I I VECTOR OFFSET

SP.$S8 INTERNAL REGISTER

SP#$SA SPEtIAL STATUS WORD

SP#o1C INSTRUCTION PIPE STAGE C

SP.$iE INSTRUCTION PIPE STAGE B

S DATA CYCLE FAULT ADDRESS

SP4114 INTERNAL REGISTER

SP#$16 INTERNAL REGISTER

SP4118 OATA OUTPUT BUFFER

SP411IC INTERNAL REGISTERS
SP.$22 4 WORDS

SP 424 STAGE 8 ADDRESS

SP4$28 INTERNAL REGISTER

SP4$2A INTERNAL REGISTER

SP412C DATA INPUT BUFFER

SP-13O INTERNAL REGISTERS

22 WORDS
SPo15A

Figure 34 Long bus cycle fault stack frame

The program counter value (SP+02 Hex) is the address of the instruction that was
executing when the bus cycle fault occured (not necessarily the instruction that
caused the bus error).

d. Coprocessor-related exceptions

These exceptions can be divided in two groups, coprocessor-detected exceptions and
main processor-detected exceptions. The main difference between two groups is the
point at which the exception processing starts. Due to concurrent instruction execution,
the processing for many of the coprocessor-detected exceptions does not start until the
main processor completes the execution of the offending instruction and attempts to

execute the next instruction. The exception processing for all main processor detected
exceptions and some coprocessor-detected exception starts during the execution of the

offending instruction.'

64

(1) The Coprocessor-Detected Exceptions.

The coprocessor-detected exceptions can be either related to the communication

with the main processor or to the execution of a floating-point instruction. The
exception vector numbers and address offsets for coprocessor-related exceptions are as

follows:

• Vector Vector
Number Offset (Hex) Assignment

7 1C FTRAPcc instruction
11 2C F-Line emulator
13 34 Coprocessor Protocol Violation
48 CO Branch or Set on Unordred Condition
49 C4 Inexact Result
50 C8 Floating-point divide by zero
51 CC Underftow
52 DO Operand Error
53 D4 Overflow
54 D8 Signalling Not-A-Number

The execution of a floating-point instruction can cause one or more of eight

exceptions. The exceptions caused by the instruction "move floating-point data register

to an external location" are called mid-instruction exceptions. All the other instruction

exceptions are pre-instruction exceptions.

* Signalling Not-A-Number: The data types defined by the user or non-IEEE
data types cause SNAN exception. This exception is
never caused as a result of an operation. The
instructions that do not modify the status bits must
be used in SNAN trap handier to hinder further
exceptions.

* Operand Error: If the current operation has no mathematical
interpretation for the given operands, then an operand
error occurs.

* Overflow: When the exponent of the result is greater than or
equal to the maximum value for the specified format,
then overflow condition can be detected. But the
exception occurs if the destination is in one of the
floating-point formats. Overflows for destinations in
integer or packed decimal format, are included as
operand errors.

* Underftow: When the exponent of the result is less than or
equal to the minimum value for the specified format,
then overflow condition can be detected. But the
exception occurs if the destination is in one of the
floating-point formats. Overflows for destinations in
integer or packed decimal format, are included as

65

operand errors.
4 Divide-By-Zero: A division with zero divider or a transcendental

function which is asymptotic with infinity will cause
Divide-By Zero exception.

" Inexact Result (INEX2): This exception will occur, if the result of an
operation, except for an operation with packed decimal
operand, has a mantissa that can not be represented
in the specified rounding precision or the destination
precision.

" Inexact Result (INEXI): This exception will occur, if the result of an
operation with packed decimal operand, has a mantissa
that can not be represented in the specified rounding
precision or the destination precision.

" Branch/Set on Unordered: The conditional instructions with the following
IEEE non-aware branch condition predicates can cause
BSUN exception.

Table 11 IEEE non-aware branch condition
predicates

CT GREATER THAN

NGI NO GREATER THAN

GE GREATER THAN OR EQUAL

NGE NOT GREATER THAN OR EQUAL

L7 LESS THAN

NLT NOT LESS THAN

LE LESS THAN OR EQUAL

NLE NOT LESS THAN OR EQUAL

CL GREATER OR LESS THAN

MGL NOT GREATER OR LESS THAN

CLE GREATER OR LESS OR EQUAL

NGLE NOT GREATER OR LESS OR EQUAL

SF SIGNALLING TRUE

St SIGNALLING FALSE

SEQ SIGNALLING EQUAL

SHE SIGNALLING NOT EQUAL

(2) Coprocessor Detected Protocol Violations
A protocol violation occurs, when the command, condition, register select or

operand CIR is accessed unexpectedly as follows:
" When a write to the command or condition CIR is expected, but the register

select or operand CIR is accessed.
" When a read from the register select or operand CIR is expected, but a write to

the command, condition or operand CIR occurs.
* When a write to the operand CIR is expected, but either a write to the command

66

or condition CIR or a read from the register select or operand CIR occurs.After

detecting a protocol violation, the MC68881 encodes the response CIR with the take
pre-instruction primitive so that the MC68020 will terminate the dialog.

Table 12 MC68020 Exception Vector Table.

VECTOR VECTOR VECTOR
NUMBER OFFSET

(DECIMAL) (HEX) ASSIGNMENT

I SO RESET INITIAL ISP
I 0*4 RESET INIIIAL PC
1 *M - BUS'ERROR

3 1 C ADDRESS ERROR
4 OiT ILLEGAL INSTRUCTION

5 IT4 Z(RO DIVIDEY
.. . 10 CHK.CHK2 INSTRUCTION
7 01U cpTRAPcc, TRAPc, TRAPV INSTRUCIIONS

T t29 PRIVILEGE VIOLATION
9 IT4 TRACE
II -- T LINE II EMULATOR
ii 1Tf LINE 1Ill EMULATOR

I1 0311 UNASSIGNED
T iT4 COPROC[SSOR PROTOCOL VIOLATION
T4 036 MORMAT ERROR
15 sic UNINITIALIZED INIERRUPT

Ihrough UNASSIGNED. 23 05C

--- Y4- -IT1 SPURIOUS INTERRUPT

25 T64 LEVEL I INTERRUPT AU1OVECTOR
21 7Tr LEVEL 2 INTERRUPT AUIOVECTOR
7 O6if LEVEL 3 INTERRUPi AUIOVECTOR

28 I7I LEVEL 4 INIERRUPT AUTOVECTOR
-' I04 LEVEL 5 INTERRUPI AUOVECTOR

31 $78 LEVEL I INIERRUPT AUTOVECTOR
1 VCe LEVEL 7 INTERRUPT AUIOVECTOR

Ihrough TRAP 1O - IS INSTRUCTION VECTORS

47 SOC
45 TCT FPCP OSUN
4T 4C4 fPCP INEX...

51 Ice ' FPCP OZ
5t CFC FPCP UNFL
3T- UO FPCP OPER
5y- P-W /Pep OVEL

T4 " tOO IPCP SNAN
-5 1Oc UNASSIGNED

TO Ir PNMU CONFIGURATION

5T It4 PNMU ILLEGAL OPERATION
Fr 1TI PMMU ACCESS LEVEL VIOLATION
n-ff -rr -

Iroeuh UNASSIGNED
03 ore
64 1l

throvh USER DEFINED
255 3rc

67

Table 13 MC68020 Extensions To M68000
Family Instructions

INSTRUCTION EXTENSION

Bcc 32 BIT DISPLACEMENT

Brmxxx BIT FIELD INSTRUCTIONS

BKPT NEI INSTRUCTION

BRA 32 BIT DISPLACEMENT

BSR 32 BIT DISPLACEMENT

CALLM NEI INSTRUCTION

CASCAS2 NEW INSTRUCTION

CHK 32 BIT OPERANDS

CHK2 NEW INSTRUCTION

CUP] PC RELATIVE ADDRESSING MODE

CMP2 NEW INSTRUCTION

cp COPROCESSOR INSTRUCTIONS

DIVS/DIYU 32 BIT AND 64 BIT OPERANDS

EXTB 8 BIT EXTEND TO 32 DITS

LINK 32 BIT DISPLACEMENT

MOVEC NEW CONTROL REGISTERS

MULS/MULU 32 BIT OPERANDS

PACK NEW INSTRUCTION

RTM NEW INSTRUCTION

1ST PC RELATIVE ADDRESSING MODE

TRAPcc NEW INSTRUCTION

UNPK NEW INSTRUCTION

Table 14 MC68020's Improved Features.
FEATURE IMPROVEMENT

DATA BUS 8, 16 OR 32 BITS (DYNAMIC SIZING)

ADDRESS BUS 32 BITS

INSIRUCITION CACHE 128 WORDS

COPROCESSOR INTERFACE IMPLEMENTED IN MICROCODE

DATA ALIGNMENT ONLY INSTRUCTIONS WORD ALIGNED

CONTROL REGISTERS SFC, DFC. VBO, CACR, CAAR

STACK POINTERS USP. SSP (ISP ond MSP I

STATUS REGISTER TI/TT, S , I I MASK, COMO. CODE

ADDRESS SPACE CPU SPACE - FUNCTION CODE 7

STACK FRAMES ., 11, 12, 19. $A, 18

68

Table 15 MC68020 Instruction Set.

- 45 aen - a - . -
- -D La 5 LA OLa

- * .- en La aen '.a aLi 0 3 0L.i'..
Li a - C U - - C L- La - C

E - 4 .- - L.J 3 '. Li a 4 a 4
La C - La .4 4 - Li La

o .a - *0 La -. ~ V, La - a .s gsa en ,.. .. a
= a a a a *- - 50 a S La La 4 a .4

a 4 a LAO LaS S 4 0 emMa - a 4
L.a a a ii 4 Li 0 en en S 4 La La en 4 a -0~ U LA 4 3
La - .j '.a a '.4 en - = a Sos a en . - is a aca a a en C U - - Li 0 - a en -0 Li a -

- .~ = a a La - C 5 en - -. a - '., a en a a = -
LI .. - en en en 0 0 0 4 - Ca en 4 - 0 4 0 = 00 a a - -

- - U - a a - - a Cc a U 0 Li en - La~0
o -. LI a a 4L'.'..L.o 0------LI Li = La S Li (A - C S
LA'.. LIZ LiLa Li L.a Li .a a en a a - ei. a a en
eLI La LL K K = 4 C 4 4 4 44 a en Lienen en 50 Lit0 Li

ea a a a LI a a a a a a Li ti Li 55 La
- a Li 4 4 0 a a en = .- a.-Lae-.-a. a a a - - a a - La a

o a case 4 en 4 4 4 en a a 4 - a en - .- 4
4 ~ LaO 0LaLiLiLaLaenLi en en en en en bLiena a LaX a a en en Li 4 L.A aa a a a - a a a a a en en en en en en en en------en en s - Li a '-en -

o a '.4
- a - a
- 0 0 0 LI
Li a a - La a
0 - L 0 ii a en a ti 4
a - La a a a 4 - 0 m1 a a a a = = a Li Li 4 u a

LI 4 LA a - 0 Li a a en Li U 0 C 0 5 5 S 4 en 4 4 4 -. a a a en '.i a en en
en 4 LiL.C C o-L-~-L-- S La - 0 en 0 = = 5 4 a a a en a a a a a a a a a
= a a a a a a a a a a jen en en en en en en en en----- en o uc.a,.Aa. -

en.> a a en en
OX Li 4 .- en Li Z La
= 4 a a = - Li Li S

a en a a - LU LA a .1 4 L- a
La 0 a a LI La a a La - a a

S a 4 00 0 a L.a La - - en 5 00

0 a Li Li a - a a LiLa. 0 en a - La C - a a Li Li

a a La - - *- S La 4 -, Li Lien a- a - a -. -
0 Li 0 en en en - 0 La Li La Li a 4 La a - a - Lien en

a La Li - Den C 0 a a L~ 054 La K - a -4 La a enD
0 .- 00 a a at) 2 a a - a La. en- LaaaLa 4 - a a a a a a
a en a.-~LiLILaLa 4 a U- a - en - en en en a en a La 0 - a en a Li Li
La LU . a Coa~LI en Li 4 a La - en a-a enaJaLi a. - en a a

3 00 Li La a 0 0=4 Li a a a - La 500 - 4
LiLA C a a LI 0 La. 2 a 0 0~ en 0 = La en -J La a a .4 a
a La LI 0 4 en 4 2 0 - Li 4 4 4 Li en en o ma a 40 2 La La Li Li 4 4 4
4 a La U) Li Li 4 Li Li Li LS...LaaLiLiLI

a aenLUenLALULJLUaa4 a LI a a a a a a a a a u LA Li Li Li Li Li Li
0 5 L.A - 2 0 0 it - 4 0 0 0 - 0 C 0 0 0 0 0 0 0 0 0ZLaLiLa 0 0 0 -
LILiLaen0aaLaen~-i-.a.aa a a ma a a a a a en en a a a a a a

a en en I
- a a a I a a

- - a I a L.I a en
Li 00 - a I en Li en enLit) I a 4 Li S a en en

- aat.aaaentiLaa a a 4 a a a a a a a a a a a a Li .L a La -ens as-- 0 0ax~aaenLa-en 0 0 00 00 000 a en lens La Li 005 a-* La LiLiLiLiLaLaLiLaLiLien
en

= Li LI 00 enLiLiLiLi--, -,a..4a S ma a a a as ama ja a a a a a cc

- - - . en
Li La Li I en Li a
- Li a - 4 La I Ca 00en a 4 Li a a i en a en

a 4 Li 4 - C I 4 en 0
La La. a LILILLI en Li La 4 5

- a a LA 500 LaO a en - OCLaC Li
0 4 a a a a - a La en a -

S La a. a 4 La 4 40 LiLa. - 4 a a a ~ 4
en a ,.. a a a a - a Lie 4 4 - a en -
a a--Li Lien en La'.. 0 e..OC en a S S 40 en 0

a Li L.a - - a a - a en a a a en en LA Li Li
- - en a.a 0 0LiLaL...--aLaLa 0 D Ci- a a

a en 4 nenO en a a a.. -------- a en Li 00 en cm
4 en - La a a Li a 44 La. ~a. ~5 - La.en 4 45 a is am
a Lao - 4 4 - en - as a a 04 4 LA 4
La a La Li a LiLaLaLa 5 enaLaLaLa- LaLaLa 0 Li
LI en a -LaaaLa - - - - Li Li a -- 0 - -0 Li LaS LA La Li Li
Li en a a - 4 4 a a asses a - - a - a a a a a a a La a a a
0 4 - o a LI LI S Li LiLA'.. La. Li Li 4 4 en a a 4 4 4

------- a - - - .a a - a a a Li . a a aCOCOa CLI Li 4 en en en en U en - - en en La4 en. en am a La - Lam a a
5 0 en 5 0 5 5 5 a aLaLaLaLa-a-- Li Li 5 5 La 5 Li 4 a * a a a 5 a s
4 4 4 4 4 4 a a 4 50 LaLaLa en = ~5L-0 eaLa 50 Li Li Li Li Li Li Li Li Li

Li 4 en =
LI a - .- en en.- La a

a 0 4 -o a - . LI a a a Si = '.. a Lien- - La .4 d4 0 4 La
LI en CCCD en 0 en a - a a Li LILaL-enO a 4 La a en .J en en Sen S a a a

en a en a en a en a a en - LI Li - '.. ta. .. - '.. '.. a a en en - 4 4 4 a a a a a a
a 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C Li Li La Li Li Li Li Li Li

69

APPENDIX E: MC68881 REVISTERS AND DATA TYPES

I. MC68881 REGISTERS

The programming model of the MC68881 contains four groups of registers.

A. Floating Point Data Registers (FPO-FP7)

The eight 80-bit floating point data registers are used to store external operands in

extended precision format. All external operands are converted to extended precision
4

numbers, regardless of their data format, before they are stored in the floating point

data registers. The higher order 16 bits are not used in the extended precision data

format.

The bit field descriptions for extended precision data format;

0 through 51 Fraction
52 thropgh 62 Biased Exponent
63 :Sign
64 through 79 Not used

B. Floating Point Control Register (FPCR)

This 32-bit register is used to enable/disable traps for floating point exceptions and

to set rounding mode (Figure 35). The high-order 16 bits are reserved for future use.

The low-order 16 bits contain exception enable byte and mode control byte. The user

can read fr, an and write to the control register (with high-order word zero for future

compatibility).

31 15 |

[, I([XCEPT'. WN9~.1 NODE COM|ROL I

Figure 35 Floating Point Control Register

70

1. Exception Enable Byte

The exception enable byte contain eight enable bits for each class of floating point

exceptions as follows (see Figure 36):
Exception enable byte bit description:

Bit 15 : BSUN (Branch/Set on Unordeted)
Bit 14 : SNAN (Signalling Not A Number)
Bit 13 : OPERR (Operand Error)
Bit 12 : OVFL (Overflow)
Bit 11 : UNFL (Underflow)
Bit 10 : DZ (Divide by Zero)
Bit 9 : INEX2 (Inexact Operation)
Bit 8 : INEX1 (Inexact Decimal Input)

is 14 13 12 iI Is 9 S
IBSUKI4 SNAN IOPERRI OVIL IUNFLt 02 Z kNEXI INEX72

Figure 36 FPCR Exception Enable Byte

The bit numbers in Figure 36 refer to the bit numbers of low-order word of the

control register. The status of any bit position determines whether the corresponding

exception will be processed or not. To ensure that the exception will be processed, the

bit positions for this exception in both the control and status register should be set. The

enable byte in the control register should be set before an exception occurs. Setting any

enable bit in the control register after an exception occurs does not have any effect in

processing the exception, regardless of the corresponding bit value in the statuf register.

The following exceptions can be caused simultaneously by executing a single

instruction.

" SNAN and INEXI
" OPERR and INEX2

" OPERR and INEXI

" OVFL and INEX2 and/or INEXI
" UNFL and INEX2 and/or INEXl

In case of multiple exceptions, only the higher priority exception will be processed

and the other(s) will be ignored. The bit position of an exception determines its

priority, BSUN (Bit 15) has the highest priority.

71

2. Mode Control Byte

This byte controls the rounding mode and precision. If all the bits are zero then

IEEE default is selected.

Bits 7 and 6 determine the rounding precision as follows:

* Bit 7 Bit 6 Precision

0 0 Extended (round to 64 bits)
0 1 Siagle (round to 24 bits)
1 0 Double (round to 53 bits)
1 1 Undefined

Bits 5 and 4 determine the rounding mode as follows:

* Bit 5 Bit 4 Mode

0 0 To nearest
0 1 Toward zero
1 0 Toward minus infinity
1 1 Toward plus infinity

i 7 6 5 4 3 2 1 0
I PRECISION I ROUNDlH I .C

Figure 37 FPCR Mode Control byte

The bit numbers in Figure 37 refer to the bit numbers in the control register. The low

order nibble of the mode control byte is always zero.

C. Floating Point Status Register (FPSR)

This 32-bit register contains condition code byte, accrued condition code byte,

exception status byte and quotient byte (Figure 38). The user can read from and write "N

to the status register.

31 23 15 7

Com"o. CODE I "°"-' IEHI J EC . SI'AI. '" A R I

Figure 38 FPCR Status Register

72

In the following, the bit numbers refer to the bit numbers in the status register.

1. Condition Code Byte

All floating-point arithmetic instructions affect the four bits contained in the

status register (see Figure 39). The bits 31 through 28 are reserved and not used. They

should be set to zero. The bits 27 through 24 are encoded as follows:

* Condition Code Byte

Bit 27 : N (Negative)
Bit 26 : Z (Zero)
Bit 25 : I (Infinity)
Bit 24 : NAN (Not A Number or Unordered)

3 1 30 29 28 27 26 25 24

o I ,N I Z i ,.

Figure 39 FPSR Condition Code byte

2. Quotient Byte

The sign and the seven least significant bits of the quotient (unsigned) after

an FMOD or FREM instruction are stored in the quotient byte (Figure 40).

* Quotient Byte

Bit 23 : S (Sign)
Bits 22 through 16 Q (Quotient)

23 22 2 1 - 26 19 18 17 |6

Figure 40 FPSR Quotient byte

The quotient byte remains unaffected until another FMOD or FREM instruction

overwrites the byte or it is cleared by the user.

73

3. Exception Status Byte

Each bit position in the exception status byte indicates the occurence of a floating-

point exception, during the last arithmetic or move instruction (Figure 41). This byte is

cleared before executing an instruction that can generate a floating point exception,

except for FMOVEM and FMOVE control register instructions. Setting a bit in the

exception status byte by a user write does not cause an exception.

Exception status byte bit description:

Bit 15 : BSUN (Branch/Set on Unordered)
Bit 14 : SNAN (Signalling Not A Number)
Bit 13 : OPERR (Operand Error)
Bit 12 : OVFL (Overflow)
Bit 11 : UNFL (Underftow)
Bit 10 : DZ (Divide by Zero)
Bit 9 : INEX2 (Inexact Operation)
Bit 8 : INEXI (Inexact Decimal Input)

15 14 13 12 11 10 # 8

. BSUN I SNAN I OPERR I OVFL I
U N F L

1 O Z I |NEXIi I ErX2

Figure 41 FPSR Exception Status byte

4. Accrued Exception Byte

This byte contains five exception status bits that are logical combinations of the bits

in the exception status byte (Figure 42). Unlike the exception status byte, this byte is

not cleared before every instruction that can generate an exception. It is cleared either

by the user via a write operation to the status register or by the MC68881 via a reset/ a

null state size restore operation.

* Accrued exception byte bit description:

Bit 7 : IOP (Invalid Operation)
Bit 6: OVFL (Overflow)
Bit 5 : UNFL (Underflow)
Bit 4 : DZ (Divide by Zero)
Bit 3 : INEX (Inexact)

74

7 6 5 4 3 2

Figure 42 FPSR Accrued Exreption byte

Bits 0 through 2 are not used and should be set to zero. The logical combination of the

bits are as follows:

A(IOP) = A(IOP) + E(BSUN) + E(SNAN) + E(OPERR)

A(OVFL) = A(OVFL) + E(OVFL)

A(UNFL) = A(UNFL) + (E(UNFL) 9 E(INEX2))

A(DZ) = A(DZ) + E(DZ)

A(INEX) = A(INEX) + E(INEX1) + E(INEX2) + E(OVFL)
4

where A() = Accrued Exception Byte

E() = Exception Status Byte
"l+"= Logical OR

= Logical AND.

D. Floating Point Instruction Address Register (FPIAR)
I

This 32-bit address register is loaded with the address of the floating-point

instruction before it is executed. This is due to the non-sequential instruction execution

by the MC68020 and MC68881, in which the program counter value saved by the

MC68020 in response to a floating-point exception trap may not correspond to the

offending instruction. The content of instruction address register can be used by

floating-point exception handler to locate the instruction that caused the exception. The
instructions that do not modify FPIAR can be used in the exception handler to read the

FPIAR without changing the old value. These instructions are FMOVE to/from FPCR,

FPSR, FPIAR and FMOVEM. The FPLAR is cleared by a reset or null state size

restore operation.

II. MC68881 DATA FORMATS AND TYPES

The MC68881 supports the following data formats;

- Byte Integer (8 bits)

75

- Word Integer (16 bits)

- Long Word Integer (32 bits)

- Single Precision Real (32 bits)

- Double Precision Real (64 bits)

- Extended Precision Real (96 bits)

- Packed Decimal Real (96 bits)

The integer data formats are straightforward and they are not described in this section.
The bit field descriptions for floating data formats are as follows (see Figures 43

through 46):

1. Single Real (32 bits)
" Bit Fields :

Bit 31 : Sign of Fraction
Bits 23 through 30 : Exponent
Bits 0 through 22 : Fraction

31 36 22 S

SIXP Jm23 1T FRACT ION

Figure 43 Single Real data
format

2. Double Real (64 bits)

" Bit Fields :
Bit 63 Sign of Fraction
Bits 52 through 62 : Exponent
Bits 0 through 51 : Fraction

63 62 51 S

S ExP. 52 Oil FRACTION

Figure 44 Double Real data format

76

3. Extended Real (96 bits)

Bit Fields
Bit 95 Sign of Mantissa
Bits 81 through 94 Exponent
Bits 64 through 80 Not used (all zeros)
Bits 0 through 63 Mantissa

95 94 89 63 S

IS I 5 BIT EXPONENT 6 64 SIT MANTISSA

Figure 45 Extended Real data format

4. Packed Decimal Real (96 bits)
* Bit Fields :

Bit 95 : Sign of Mantissa
Bit 94 : Sign of Exponent
Bits 93 through 92 : Used only for infinity and NANs, zero otherwise
Bits 81 through 91 : Exponent
Bits 64 through 80 : Zero (if no overflow in BIN to DEC conversion)
Bits 0 through 63 Mantissa

15 94 93 92 91 8 67 1

S I lS 9 3 D IGt C XP I t.7 DIGIT M ANTISSA

Figure 46 Packed Decimal Real data format

The single, double and extended precision floating-point data formats can represent five
floating-point data types which have three parts: Sign of mantissa, Exponent and

Mantissa.

77

• Normalized Numbers (Figure 47)

Sign of Mantissa :0 or I
Exponent Greater Than MINIMUM, Less Than MAXIMUM
Mantissa : Any bit pattern

Figure 47 Normalized Number format

Denormalized Numbers (Figure 48)

Sign of Mantissa: 0 or 1
Exponent 0
Mantissa Any non-zero bit pattern

O. 1 [XP . I] ANTISSA - ANY NON-ZERO Oil PAT ERN

Figure 48 Denormalized Number Format

Zeros (Figure 49)

Sign of Mantissa :,0 or 1
Exponent :)
Mantissa : 0

1. o,, Ex • I MANTISSA I

Figure 49 Zero format

78

*Infinities (Figure 50)

Sign of Mantissa :0 or 1
Exponent : MAXIMUMLJ
Mantissa 0

Figure 50 Infinity format

*Not-A-Number (Figure 51)

Sign of Mantissa: 0 or 1
Exponent : MAXIMUTM
Mantissa 0

4, XP - MAXIMUM T MANTISSA *ANY NON-ZERO Oil PATTERN

Figure 51 Not-A-Number format

79

APPENDIX F: MC68881 COPROCESSOR INTERFACE

A. SIGNAL CONNECTION AND COPROCESSOR ACCESS

The MC68881 is connected to the main processor via 32-bit data bus, as shown in

the Figure 52. The pins AO and SIZE are both pulled-up to Vcc in order to configure

32-bit data bus connection. All the other signals, except for the chip select, are directly

connected to the corresponding pins of the main processor. The chip select signal (ICS)

is generated from A18, A17 and A15 by the external logic given in Appendix G.

A! - A4

DR " D31

Figure 52 MC68020/MC68881 32 bit data bu

connection

For coprocessor access, the address lines A0 through A4 and A13 through A19 are
encoded as follows (see Figure 53):

* AO through A4 : Indicate the Coprocessor Interface Register to be accessed

" A13 through A15 Indicate the ID number of the coprocessor to be accessed

* A16 through A19 Indicate that CPU space transaction is coprocessor
communications. (0010)

FUNCTION ADDRESS BUS

CODEC 31 28 19 16 15 13 12 5 4 t

l Fe 1 S 1 S , , I e S , l 1 9p 1D 1 1 1 - # I I I CIR REGISTER]

Figure 53 CPU space encoding for coprocessor access.

80

_________ _____ ______________

B. FOPROCESSOR INTERFACE REGISTERS

The main processor communicates with the MC68881 via a group of coprocessor

interface registers which are either 16-bit or 32-bit long. The 16-bit interface registers

are placed on the high order word of 32-bit data bus (D31-DI6) by asserting IDSACKI

and negating IDSACKO, regardless of the value of Al. Figure 54 gives a list of

coprocessor interface registers with their address offsets, widths and read/write

attributes. Write access to a read-only register is ignored, whereas read access to a

write-only register returns all ones. The registers Operation Word (Offset 08 Hex) and

Operand Address (Offset IC Hex) are not used by the MC68881.

A4 A3 A2 AI AW OFFSET WIDTH ITP(

RESPONSE 0 1 X $so 18 READ

CONTROL I I 0 I X 162 I IRIIE

SAVE I O I I X $04 16 READ

RESTORE I O I I X 186 16 R/

OPERATION WORD I I I I X 168 I R/I

COIWAND S I O I X ISA IS WRITE

IPESERVEDI S 1 1 1 X iOC 16

CONDITION I I I I X b1E 16 WRIIE

OPERAND I I X X I1i 32 RI

REGISTER SELECT I I I I X 114 16 READ

IRESERY OI i I I I X 116 iIS

INSTRUCTION ADDRESS I I I x X l18 32 WRITE

OPERAND ADDRESS I I I X X Ilc 32 R/!

Figure 54 Coprocessor Interface Register map

a. Response CIR ($00)

The response CIR is used to transfer service requests from the MC68881 to the

main processor. The MC68881 does not start instruction execution until the main

processor reads the Response CIR for the first time after a write to the Command CIR.

81

b. Control CIR ($02)

The control CIR is used by the main processor to issue an instruction abort or an

exception acknowledge to the MC68881. The high order 14 bits of the Control CIR are

not used. Although bits 0 and I are defined as abort and exception acknowledge,

respectively, it has the same effect on the MC68881 to set bit 0 or bit 1. After a

write to the Control CIR, the MC68881 takes the following steps;

* Terminates the instruction execution.

" Clears pending exceptions, if any.

" Resets the bus interface and gets ready to begin new instruction protocol.

c. Save CIR ($04)

The main processor uses the Save CIR to issue a context save command to the

MC68881 and to read the format word of the MC68881 state frame. A read from this

register suspends the operation currently being executed by the MC68881 and initiates

a state save operation. If the current operation is a state save or state restore, then it
will not be suspended by a read from the Save CIR.

d. Restore CIR ($06)

The Restore CIR is used by the main processor to transfer a context restore

command to the MC68881 and to validate the format word of a state frame. After a

write to this register, the MC68881 stops executing any operation and prepares to load

new internal state context from memory.

e. Operation Word CIR ($08)

This register is not used by the MC68881. A write to this register is ignored and it

does not cause a protocol violation.

82

f. Command CIR ($OA)

The communication for executing a general coprocessor instruction (cpGEN) is
initiated by a write to the Command CIR by the main processor. When a write to this

register is detected, the MC68881 latches the data from the data bus, and, if not busy

executing a previous instruction, the response CIR is encoded with the first primitive of

the dialog for the execution of the new instruction. Otherwise, the latched data is saved

for future use and the response CIR is encoded with the null primitive.

g. Condition CIR ($OE)

The use of this register is the same as the Command CIR, except that the Condition

CIR is for conditional coprocessor instructions. The value of the conditional evaluation
is returned to the main processor with the first primitive of the dialog.

h. Operand CIR ($10)
The 32-bit Operand CIR is used to transfer data between the main processor and

the MC68881. An access to the Operand register by MC68881 is legal after reading the

following primitives:
9 Evaluate effective address and transfer data

* Transfer multiple coprocessor registers

9 Transfer single main processor register

and after a read/write of idle or busy format word from/to the save/restore CIR. An

access to this register in other cases causes a protocol violation.

i. Register Select CIR ($14)

The Register Select CIR is read by the main processor to get the register mask

during a move multiple floating-point data register operation. An access to this register

is legal only just after issuing a transfer multiple coprocessor registers primitive to the

main processor. An access at any other time causes a protocol violation. Only low-

order eight bits of this register are used.

83

j. Instruction Address CIR ($18)

The main processor uses this 32-bit register to transfer the address of the MC68881

instruction already being executed when the PC bit of any primitive is set. An access

to the Instruction Address CIR at any time does not cause a protocol violation. FPIAR

register is updated, whenever a write to the Instruction Address CIR occurs. A read

from this register returns all ones.

k. Operand Address CIR (SiC)

This register is not used by the MC68881 and an access to this register does not

cause a protocol violation. Reads from this register always return all ones and writes

are ignored.

C. COPROCESSOR COMMUNICATION AND RESPONSE PRIMITIVES

1. Coprocessor Communication

The length of MC68881 instructions vary between one to eight words. The first two

words are called operation word and coprocessor command word. The words after the

coprocesor command word specify the operands. Bits 12 through 15 in the operation

word are always one, which specify F-line operation code. Bits 9 through 11 indicate

the coprocessor ID. The low order byte of the operation word is encoded according to

the type of the instruction.

The MC68020 and MC68881 follow the communication protocol, given below,

during the execution of a floating-point instruction:

" The MC68020 detects an F-line operation word and initiates the communication
by writing to the appropriate coprocessor interface register (or by a read for
MC68881 save instruction).

" The MC68881 gives a response to the previous write operation by writing, what
is called a primitive, to the response CIR. The MC68020 then reads the response
CIR and proceeds in accordance with one of the following indications by the
response primitive:

The MC68881 is busy: Process any pending interrupt,
query the MC68881 again.

84

There is an exception condition and MC68020 is instructed to take an
exception:

Acknowledge the exception and initiate the
processing.

The MC68881 requests service:
Perform the service requested by
the MC68881 such as;

Evaluate the effective address.
Transfer data between effective address
and the MC68881.

Query MC68881 after performing the service.

The execution of the coprocessor instruction can start and MC68020 is
released:

Begin the execution of the next instruction.
If in trace mode, take the trace exception after
coprocessor instruction is processed.

2. Response Primitives.

The response primitive is the data read from the coprocessor interface response

CIR. There are 18 response primitives defined by the MC68000 family coprocessor

interface. The MC68881 uses six of these primitives. The response primitives are 16-bit

words and have the following general format;

" Bit 15 (CA): Come Again; if set, the MC68020 should return to read
the response CIR again, after performing the
service requested by MC68881.

" Bit 14 (PC): Program Counter; if set, the MC68020 should immediately
pass the current PC value to the instruction
address CIR.

" Bit 13 (DR): Direction; if set, it indicates a main processor read,
otherwise indicates a main processor write.

" Bits 0 through 12: Contains data dependent on the individual primitive.

The following are the six primitives used by the MC68881:

a. Null Primitive

The null primitive provides synchronization and concurrent execution with the main

processor. Only five bits are used to encode the null response, the remaining bits,

except for bit 11, are all zeros (Figure 55):

85

• Bit 15 (CA): Come Again; as explained above.

• Bit 14 (PC) : Program Counter; as explained above.

* Bit 8 (IA) Interrupt Acknowledge; when set, the main processor may
process any pending interrupt, otherwise interrupts are ignored.

" Bit 1 (PF) : Indicates the status of the MC68881; when set, the MC68881 is
idle. It is cleared if the MC68881 is executing an instruction.

" Bit 0 (TF) : Indicates the result of a conditional evaluation.

CA P 0 0i A 0 S A I P 1 F I r

Figure 55 Null Format

b. Evaluate Effective Address and Transfer Data

The MC68881 uses this primitive to request the transfer of data between

its data or control registers and an external location, which can be either a memory

location or a register of the main processor. The bits 13 through 15 are DR, PC and

CA bic as explained in the general format. The bit 12 is set to one, and bit 11 to zero

(Figure 56).

* Bits 8 through 10 specifies one of the following addressing modes:

000 Control Alterable
001 : Data Alterable
010 : Memory Alterable
011 : Alterable
100 Control
101 : Data
110 : Memory
111 : Any Effective Address

If the class of effective address in the operation word does not match the specified

class, then the main processor should write an abort command to the control CIR.

CA, I~ PC I DR I AI [A LEN"GT"

Figure 56 Evaluate Fffective Address and Transfer Data format

86

c. Transfer Single Main Processor Register

The MC68881 requests the transfer of one main processor register by using this

primitive. The MC68020 writes a long word to the operand CIR in response to this

primitve. The CA, PC and DR bits have the same functions as explained above. Bits 0

through 2 indicate the register number to be transferred, and bit 3 (D/A) specifies

whether it is a data (D/A=0) or address (D/A=I) register. Bits 10 and 11 are set to one;

all the other bits are zeros (Figure 57).

CI C I DR I , 1 , , I , , 1 . ' 1 ' 1' 1 1 1 1 1 D/A I , RE I

Figure 57 Transfer Single Main Processor Register format

d. Transfer Multiple Coprocessor Register

The MC6$881 uses this primitive to request the transfer of multiple floating-point

registers to or from memory. Bits 13 through 15 are DR, PC and CA bits. Bits 0

through 7 indicate the size, in bytes, of the registers to be transferred. The MC68881

registers are always 12 bytes long. Bit 8 is set to one and all the other bits are zeros

(Figure 58).

CI P I D I° I' I I ' I I ' ' 9 I LN T

Figure 58 Transfer Multiple Coprocessor Register format

e. Take Pre-Instruction Exception

This primitive is used in the following cases:

87

When an arithmetic or conditional instruction is initiated, and there is a pending
exception from a previously executed concurrent instruction.

* When an illegal command word is written to the command CIR, or a protocol
violation occurs.

* When a conditional instruction which utilizes one of the IEEE non-aware
conditional predicates is executed, and the NAN bit in FPSR is one.

The CA and DR bits are zero. The PC bit is zero, when the execution cf a new

instruction is preemptied by the exception. The PC bit is one, when the exception is

generated by an illegal command word or when the exception is reported during a

conditional instruction execution. The bits 0 through 7 indicates the type of the

exception which is used by the main processor to calculate the address of the exception

handler. The bits 8 and 9 are zero, and all the other bits are set to one (Figure 59).

1' 1p PC ° 1 , , 1 1 1 1° VECTOR NUMBER

Figure 59 Take Pre-instruction Exception format

f. Take Mid-Instruction Exception

The MC68881 uses this primitive, if an exception occurs during the execution of

FMOVE FPm, <ea> instruction. In the format of this primitive, the CA, PC and DR

bits are set to zero. Bits 0 through 7 contain the vector number which identifies the

type of exception. Bit 9 is zero, and all the other bits are ones (Figure 60).

I° I PC I I I I I I I I1 I VETO N , UMBER

Figure 60 Take Mid-instruction Exception format

88

APPENDIX G: DESIGN OF THE ECB

A. Memory Mapping

The memory is divided into three segments:

- First segment $00000 - $1FFFF

- Second segment : $20000 - $3FFFF

- Third segment $40000 - $7FFFF

There are two memory mapping schemes which differ from each other in how
the segments are accessed. The first scheme is defaulted after reset or power-up. The
only way to switch from the first scheme to the second is to make a coprocessor
access. An external reset should be applied in order to switch back to the first scheme.

The memory map in scheme 1 is shown in Table 16.

Table 16 ECB Memory Mapping Scheme
1.

ADDRESS RANGE READ WRITE

SEGMENT I sOeONO - wIrFFF ROM RAW

SEGMENT 2 12011* - S3FrrF
r

COP COP

SEGMENT 3 $40e - 7FFFF ROM

In scheme 1, both ROM and RAM are mapped to Segment 1. RAM is accessed for

writing only and all reads are from ROM. Segment 2 can be accessed for both writing

and reading. ROM can also be accessed in the higher addresses. The primary area for

ROM is Segment 3. The ROM in the low addresses can be thought as an image of the

ROM in the high addresses. This image is created and removed by the signal, called

89

PHANTOM. Mapping the ROM to Segment 1 allows to access the initialization

routines after reset or power-up.

The memory map in scheme 2 is given in Table 17.

Table 17 ECB Memory Mapping
Scheme 2

ADOR(SS RA NGE.

SEGMENT 1 IOIG0 - IlFvrrr RAM

jSEGMENT 2 120566 - 3FFFrF COP

SEQUENT 3 4066 - 17rFrrF RDO

In the second scheme, the image of ROM is removed from Segment 1. RAM can be

accessed for both reading and writing. This is the condition in normal operation of the

ECB.

B. Programmable Array Logic circuit PAL B

Figure 61 shows how the chip select and other control signals are generated for

the memory mapping schemes. All the signals are the outputs of the PAL B

(PAL16L8). This PAL has been programmed by ABEL software. Appendix H includes

the programming files of the PAL B.

90

A18 Al7 AI5 RJ PHAN AI A$ SI SO -

CopE I I I X X X X X x X

ROUCE x I x I I x X x x I

I x x I I X x x x I

RAMCE X X X S I K X X X I

I I x X I X X x x I

RAMOE I I x I I x x X X X

RAMlI I I X I X I I X X I

RAM2V I I x I X I I X X I
S I X I X I X X | I -

* I x X I X I x S

RAMU I I X I x I I X I

* I x I X I x S S

I X I x x 5 I I S

RAM41 I S K I X I I X X I

X I X I X I x I

* S K S K K 1 I I S

Figure 61 Generation of the memory mapping signals

C. Programmable Array Logic Circuit PAL A

The PAL A generates the signals required for interfacing the MC68020 with

memory and RS-232 port.

1. The PHANTOM Signal

The PHANTOM signal is used to create and remove an image of the ROM in

Segment 1. During power-up or reset, asserting the IRESET line sets the PHANTOM

output high. This output remains high after the IRESET input is negated, until a

91

coprocessor access occurs, i.e., the ICopE input is asserted. It is the responsibility of

initalization routine to assert the ICopE input by making an access to Segment 2. (see

Reference 1). The ICopE input is synchronized with the IAS signal.

CLOCK

. COPE

Figure 62 PHANTOM signal generation.

2. RS232 Transmit/Receive Circuit

The IINTERRUPT output, which is connected to the IIPL2 input of the

MC68020, indicates that data is being received on RS-232 line. The IINTERRUPT

output is not asserted, unless the address lines A19 and A17 are set high, even if there

is an incoming data on RS-232 line. It is the responsibility of the communication

routine to monitor the RS-232 line by setting the address lines A19 and A17. (see

Reference 1).

92

The IRS232OUT output is used to transmit data on RS-232 line, by asserting and

negating the address lines A19 and A15 under software control. (See Reference 1.)

(5) (12)

RS2321H [
4) .

Figure 63 RS232 Transmit/Receive Circuit

3. Data Size And Transfer Acknowledge Signals

The DSACK signals return 8-bit port size for the ROM, and 32-bit port size for

the RAM. A'-v access to the coprocessor does not cause the DSACK signals to be

asserted, as the MC68881 provides its own port size. If the ROM is accessed, only the

DSACKO output is asserted to return an 8-bit port size. The outputs WO, Wi and W2

are used to provide a delay of eight clock cycles, before asserting the DSACKO, when

the ROM is accessed. This is because the ROM chip has a longer delay (150 ns for

AMD 27C256 chip) th~an the RAM chips (55 ns for Motorola 6164 chip). Both

DSACK signals are asserted, without any forced delay, when the RAM is accessed.

93

A s

t 2 4

CLI

G=t

CLOCA

COPE

OSACKO

"MM

All
Tit

Figure 64 DSACK Signal Generation.

94

D. Reset Circuit

The reset circuit was built around the Motorola's undervoltage-sensing IC, the

MC34064. The output of the circuit is driven low for more than 100 ms, during power-

up or when the reset button is pressed, and provides an external reset signal for both

the MC68020 and MC68881.

VCC

VC34164
RESCI ____

REKI"17
Figure 65 Reset Circuit

E. Software Abort Circuit

The circuit for software abort consists of all passive components, as shown in the

following figure. When the switch Si is pressed, IPL2, IPLI and AVEC lines are held

low for a period of approximately 5 microsecond, which generates an autovectored

level 6 interrupt.

95

o 7| - -

* I I

1P1
IN 271 61IPLI

lN276
____ _ _ _"AVECt2-

Figure 66 Software Abort circuit

F. 110 Interface for External Devices
I

All the pads and holes have been provided to install TL series line drivers

74245 (bidirectional for 8-bit data) and 74244/74241 (unidirectional for address and

control lines). The connections for external 1/0 interface are given in Figure 67. This

interface has not been implemented and tested in this thesis. It is left as a future

improvement.

96

74245 9

030 1 02 A 2 3
D29 15 1 3 A 3 4 .
02, IT t5 4 A4 5
027 T B5 •A5 ,r-
026 I 6 A 6 7..
025 2 87 A 1 3.-.-.
D24 IT t 8 A 8

As 7 74244 I

A34 A2 Y2 1
At - 6 1 IA3 JY3 14

TL) K a IA 4 1Y4 112

R/ -"- 1- 2A 2Y1

A4 IT 2A2 2Y2 7
A 2 157 2A3 2 Y3

kl 17 2A4 2Y4 3

~10 EXTERNAL DE[VICE

a Figure 67 1/0 interface for external devices

The complete circuit diagram and two layer PCB layout are given in figures 68

and 69, respectively. The 1/0 interface for external devices are not included in the

circuit diagram.

97

11110

- C

Has

M98

Figure 69 ECB Two Layer PCB Layout

99

APPENDIX H.- PAL A PROGRAMMING ILES

A. PAL A LISTIG FILE

0001 kmoduic palal
0002 Iflag '-r;
0003 1 PALtA DEVCE 'P16R4';
0004 I CLK,COPEREETA19,A17,A15,ASRSIN PIN 1,7,2,3,5,9,6,4
0005 1 RAMCBOE.PHANRSOUTjNT PIN 8,11,1'7,18,19
0006 I WOW1W2,DSACKO.DSACK1 PIN 16,15,14,13,12
00071I CKAXZ
00081I
00091 SO =ABOOO;
00101 SI=-ABOOl;
00119 S2 =ABOIO;
00121 S3 =ABOII ;
00131 S4 -ABIOO;
00141I S5 = ABlOl.-
00151 S6 = ABIIO;
00161 S7 =ABIII;
00171I
0018 I
0019 nr-S3'CrORS (fCLK,0OERAMCE.AS,COPE1 -> WOWlW2,DSACKO1)
00201 I CK,0.1.1,0]. [0,0,0,1];
00211I (CK.l,0,0J - 11.1.1,1];
00221 I CK.0.1,0,0J - (0.1, 1.11
00231I [CK,0,1,0,O -0 1,091
00241 I CK..0,10J- 10.0.1.11;
0025 1 fCK.O1,OIJI f-> I (110,1
00261 (K,01,0,01 ->(0.1,0,11;

00271 I CK.0,1,0,01 [> 1,0.0,1];
00281 I CK,0,1,0,01 -> 1,0,0,1];
00291 (K,01,0,01 ->[1,0,0,1];

0030 I CK,0,0,0,01 - 110,0,11;
00311 [CK,,1,1.j [0,0,0,11;
00321 I CK,1,1,1.0J ->IZZZ,1

00331I
00341 [CK0,1.1.11 [> 0.0,0,11;
0035 I CKA01.0,1J -1,11;
00361 I CK.0,1,0,1J -> [0,1,1,1
00371 I CK,01,0.l) - [1.0.1,11;
00381 I CK,0,1,0.1J -> 0,0.1,11;
00391I [CK.0.1,0,1J - [1,1,0,11;
00401 I CK0,1,0,I] -> [,1,0,11;
00411 [M.1.10, 1J ->1.0,0,01;
00421I [CK,,1,0, 1.] 1> 1.0,0.01;
0043 I CK0,1.0. 1] [1.0.0,01;
00441 I CK,0,0,0, 1] 1>1.0,0,0]
00451 I CK,0.1,1.1] - [0,0,0,11;
00461I [C& 1, 1.1,J -> tZZ,1]
00471I
0048 1
0049 n~ESTVECrORS ((CLK,OEAsCPERSETPHANJ> [PHNI)
0050 I CK,0,0,10] - [1j;
00511 [CK,0,0, 1,0, 11 -> 1)
00521 I CK.0.0,1.0.11 M>[1
00531I [CK,0.0,1,1,11 [I];1
00541I [CIC,0,0,1.1,11 >[II;

00551 [CK,0,01,1,1J M>[1
00561 I CK,00,1,1,1J - [I];
0057 I CK0,0, 1, 1,11 *>[1];

00581 I cK.0,0,1.1,J1 - 111;
00591 I CK.0,0,1,1,11 -,1[1]

100

00601 I CK,00,1,11 [>1];
00611 ICKA00,1,11 -> Li
00621 I CK,,0. 1.0. 1] 1>1];
00631 I CK.0,01.O.1] - [11
00641 I CKO,0.1.0.1J - (1];
00651I (CK.0,.0,0,1J - 0];
00661 [CK,0,0,1,0,0] M>(]
00671 I CK'..1.1,1l - [I]
00681 I CK.0,0.1,1.1J - [1];
00691 I CK0.0.0.1.1] - 10];
00701 (CK.00.0.l.01 [0];
00711 (CK,.0,1,1.0J [01;
00721 I CK.0,0,1,I.0J - (0];
00731 [CK..,1,.01 M> 11
00741I (CK0,01.,0,1J [11I]
00751I
00761 I CK,0,1,1,0.0J M>[1
0077 I CK.0., 10.] [I];
00781I [CK.0. 1,1.0. 1] 1> 1];
0079 I CKA0,11.1I ->11

00801 I CK.0,...11 -[11]

00811I [CK.0.1.1,1,1J - (Ii;
00821I (CK.0,1.1.1.1 M;[1
00831 I CK.0,1.1,1,1J - 1)
00841 [CK,...IJ ->1 [11;
00851 I CKA011.1,1] M;[I
00861I [CK.0,1,1.1,1J M>(1
00871 I (K..1,1,1,1J [11ii
00881 I CK0,11,0.J [>1]
0089 I MK0,13.0,11 M>[1
00901 I CK.0.1.1.0.11 M>(1
00911 [CK.0,.10,0.IJ - [1)
00921 I CK0,1.1.0,0J - (11;
00931 I CK.0,1.1,1J1 M;(1
00941 I CK01.1,1,1] It];I
00951I (CK,0,1,O,1.11 (11[;
0096i
00971 I CK.0.1.0.1,11 11)ii
00981I [CK.0,0,0,1.0] -> 0];
0099 1 [CK,0.1.0,1.0J [0)O]
01001 I CK,o,1.1,1,0J - [0];
01011 [CK.0.1,1.0,01 >[]

01021I
01031 I CK.0,i,i,01J [> Li
01041I
0105 IESTVECrORS (A19 , A15] -> [RSOTJTJ
0106 I LOO - [I]
01071 I 0,11 M>(]
01081I [1,0] - [1];
01091 [1.1] to []
01101I
0111 nFEST ECrORS (A19 . A17, RSIN] - M)
01121 (0.01 M>(1;
01131I (0,0,11 111;1
01141 [0-.01 111;1
01151 I 0.1.1] - (11
01161 (100 M>(1
01171I 1.0.1] ->i[]

01181 1 1,1,0) to]10
01191I(,.] - 1
01201I
0121 ffWESTVECTORS ((AS, W0.W1,W2,RAMC,COPE] - [DSACKO)
01221I [0.00.000.1 to];
01231 I 0,1,0.X,1J -> 0]
01241 (.XX.X.X,1l M>[1;
01251 I (.X.X.XX.1 M;11
01261I [X.XXX.X.0I [;
01271I
01281I

101

0129 ITESTYEVICFORS ((AS, A15. COPE RAMCE] I (DSACK1])
01301 19.00.0,01 - (01 ;
01311 [0(0.0011 ->(11;

01321 1 0,0,1.01 to] (0
01331 I 10.0,11 -> [I
01341I [0.1,0,01 *> 01;
01351 1 0,1,0.11 - 01;
01361 10.1,1.0) -> 0);
01371 t [01.1,11 -> 1]
01381 (1,0.0.01 t> 1]
0139 1 (1,0,0,1 11M
01401I (1,0,01 - 1];

01421 U11,.01 [1];
01431 I (1.0.1] D] [1
01441I1.,.1 * 1

01461I
01479
0148 IEQUATIONS
01491 RSOUT - I(A19 A15)
01501 MN 1 (A19 &A17 &IRSI)
01511 DSACKO =AS#(RAMCE&(IWO#W1#W2))#ICOFE
01521 IDSACK1 -(IAS &IRAMCE) #(AS &ICOPE &A15)
01531I IPHAN :- (I(COPE # AS)) # (RESETr & [PHAN)
01541 1W2 :=AS#(WO& IWI & 1W2)#(IWO& IW1 &W2)#(WI & W2);
01551 IWI :-AS#(WO&WI)#(WO&IWI)
01561 IWO -- AS#(WO&W1)#(WO&W2)
01571I
0158 lend psal

102

B. PAL A DOCUMENT FILE

Page 1
ABEL(tn) 3.00a - Document Generator 26-Jul-89 05:21 PM
Symbol list for Module palal

A15 Pin 9 pos, corn
A17 Pin 5 pos, corn
A19 Pin 3 pos, corn
AS Pin 6 poe, corn
CK (.C.)
CLK Pin I pos, corn
COPE Pip 7 po8, corn
DSACKO Pin 13fneg. corn
DSACKI Pin 12 neg. corn
INT Pin 19 neg. corn
OE Pin 11 pos, corn
PAL A device P16R4
PHAN Pin 17 neg, ret, D
RAMCE Pin 8 pos, corn
RESET Pin 2 poe, corn
RSIN Pin 4 pos, corn
RSOUT Pin 18neg, corn
SO (0)
SI (1)
S2 (2)
S3 (3)
S4 (4)
S5 (5)
S6 (6)
S7 (7)
WO Pin 16 neg. reg, D
WI Pin 15 neg. reg. D
W2 Pin 14 neg, reg, D
x (.X.)
z (.Z-)
-PHAN QN Node 24 pos, corn
_WOQN Node 23 pos, con
.WIQN Node 22 poe, corn
_W2LQN Node 21 po, con
palal Module Name

103

Page 2
ABEL(tm) 3.00a - Document Generator 26-Jul-89 05:21 PM
Equations for Module palal

Device PAL_A

- Reduced Equations:

RSOUT = I(A15 & A19);

INT (AI7 & A19 & IRSIN);

DSACKO = I(IAS & COPE & WO & IWI & fW2 # IAS & COPE & IRAMCE);

DSACKI = I(AI5 & IAS & ICOPE # IAS & IRAMCE);

PHAN := I(IPHAN & RESET # IAS & ICOPE);

W2 := I(WI & IW2 # IWO & IWI & W2 # WO & IWI & IW2 U AS);

WI := I(WO & IWI # IWO & WI # AS);

W0:= I(WO & W2 U WO & WI # AS);

104

Page 3
ABELQtm) 3.00a - Document Generator 26-Jul-89 05:21 PM
Chip diagram for Module palal

Device PAL_A

P16R4

---. \ I -----
I \ / II -- I

CLKI I 20 IVcc

RESETI 2 19 IT

A191 3 18 I RSOUT

RSIN1 4 17 1PHAN

A171 5 16 Iwo

AS1 6 15 IWI

COPEI 7 14 IW2

RAMCE I 8 13 I DSACKO

A15 I 9 12 I DSACK1

I IGND 1 10 11 1 OE

I10

105

Page 4
ABEL(tim) 3.00a - Document Generator 26-Jul-89 03:21 PM
Fuse Map for Module palal

Device PAL.A

0 10 20 30
0:

32: -X---X -X--

256:
288: -X-- -

512: X -- -X---

544: -- X- -X----

768: ---- X--- --X---- -

800: - X--X
832: X

1024: --

1056: ----- - X-X ----- -

1088: ---- ---- X -

1280: ---- --- X- -- X---- -

1312: --- --- X- X---X-- --
1844: .. .-- X---X -- X----..
1376: -X-

1536:
1-568. .X--X-X X--X ...
1600: .-X- X---..

1792:-
1824: -- X- -X---L-X - -
1856: .-X- X---- -

106

Page 5
ABELtm) 3.00a - Document Generator 26-Jul-89 05:21 PM
for Module palal

Device PAL,. A

Device Type: P16R4 Terms Used: 22 out of 64

Terms
Pin# I Name I Used I Max I Term Type I Pin Type

I ICLK I-I-I-- I lock
2 1RESET I -- I - I I lInput
3 1A19 I- I--I-- I nput
4 1RSIN I -- I -- I -- Ilnput
5 1A17 I - I -- I -- Input
6 1AS I -- I -- I -- Input
7 1COPE I-I-I-- I Input
8 RAMCE , -- I -- I -- Input
9 1AI I -- -- I - I

10 1UND I -I I - &D
11 1OE I -- I -- I I-- IEnable
12 IDSACK1 I 2 I 7 I Nomal 11/0
13 IDSACKO I 2 I 7 I Normal I I/O
14 1W2 I 4 1 8 1 Normal I Output
15 IWI I 3 I 8 I Normal I Output
16 Iwo I 3 I 8 I Normal I Output
17 IPHAN I 2 I 8 I Normal I Output
18 1RSOUT I 1 I 7 I Normal I1/0
19 1INT I II 7 lNormal 11/0
20 1Vcc I - I - I -- I VCC

21 I W2QN I - I - I -- Input (node)
22 IW_QN I - I - I -- IInput (node)
23 1_WOQN I - I - I -- IInput (node)
24 I _PHANQN I - I - I -- IInput (node)

107

Page 6
ABBIL1m) 3.00oa - Document Generator 26-Jul-89 05:21 PM
Test Vectors for Module palal

Device PAL_A

1 (C---Ol ---0- --- -L
2 [C-- -001 --0-..-] -> [-- -.- n ..I - ;
3 (C-- -001 --0- ---- -
4 IC-- -001 --0- H-- -
5 IC-- -001 -0-.......-] -> [-..- --- HI--H -
6 [C-- -00t --0--]--> -... ... HLI-HL . .- ;
7 IC-- -001 --0-- - -> - -... .- HI-LB . .];
8 ItC-- -001 --0- - ->1-.-.. -- t-i -- --)I;
9 (C- -001 -- 0- - ->HL.
10 IC-- -01 --0-- ..-- L
19 [C-- -01 --0----------]-> [--.......I-HLIH-..;

2 (C-.-101--0- --- J>--- ------ LL----]

13 [C--. -101 --1- t..-- .- -> .------- I HZZZ --14 [C-- -I1I1 --0]->[... .. HL t . ..]
15 (C-- -o011 --o- H-Hl.. . .. H}
16 jC-- -011 --0- - -----> [- H .17 (C-- -0 11 --0]->[.. . . HHLH J;
19 (C-- -011 --0-. >[.. . . fML . .J
19 lc--- -011 -..0-. . . . >[HLHH .. .)
20 [C--.-OlI 0 1-..]- > [. . .. -LH-L . ..
21 I---011--0- -- --.. LLLH .
22 [C-- -011 --0. LLLH. 123 [C-- -0 11 --0-. >[.. . . LLLH . ..]
24 (C--- -010 --0-. >[.... . LLLH . ..]
25 [C-- -I1I1 .-0- -11.. .. . 1 . .. 1
26 (C-- -111 --1-]- -. . .. HZZZ.. .. ;
27 [CO- -01- --0- --- -] - --- H-- -- ;
28 1¢ -o '- -- - I. . - - -- -- -- -]
29 tC0-- -01- --0- - .. .]->[.. H-- --]
30 [Cl- -01- --0- H--l. .. >[. .]
31 [CI.- -01- --0- -- H.. .]- [.1-- --]
32 tCl- -01- --0- -- 1.. .]- H-- ---1;
33 [Cl- -01- --0- 1-- 1..]- >[. H-. ..-
34 [CI- -01- --0- -- H.-->[.U.. .]
35 let- -01- --o--- 1-.. .-]- > H.1--. ..-
36 [CI- -01- --0- -- ---.] -> ---- H- -]
37 [CI- -01- --0-. . 1-- [-.. -- --> -- H-- ---];
38 [¢1-- -01- -.o. -- . .. - - --- 1H-- ---J;
39 [CO- -01- --0. -- H ..]- -- 1-- ---];
40 [CO- -01- --o--- 1-. .]- > H-];
41 [CO--01---- - 1"--- --> ---. H-- --- 1;
42 [CO- -00- --0- -- .. ---- ---- -]
43 leO- -01- -.0- -- ---.1-> -- -- ---]
44 (l- -01- --o- (-... - - -- - U-- H -- -
45 [el- -Of- --o- - 1-...- - -- - --- -- --];
46 [CI- -00- --0-. . 1--.. - - -- ----];
47 [Ct- -.0o- --o. -- . .]. ---- - - L.-. .. 1
4s [Cl- -01- --. 0--o.. .)- > 1--- -- ,--L--
49 [el-- -01- --0- -- ---.] -> ---- L--. ..]
50 [CO- -01- --o. 0- -- -- - [.-- -- -]
51 (co- -01- --o. - 1-....- -- - - -- H-- ---];

108

Page 7
ABEL(tm) 3.00a - Document Generttor 26-Jul-89 05:21 PM
Test Vecton for Module pala1

Device PAL A

52 [CO- -11- --0- - 0- .]->[--- -- H- -
53 iC0- -11- -0- -1 - ->--- ---- H-- -;
54 [CO- -11- .-0- -- 1-- --- >- - H-- -;
55 4CI- -11- --0- i- .- >--H-- -;
56 [Cl- -10- --0- -- 1-- -- -- - ---- H---];
77 CI- -11- -0- - -- --] -> --- H-- --];
58 0Il- -ll- -0- ---- -- - -- --
59 l-- -11---- -I ---]->f H-- --
60 [eI- -11- .-0- 1- H . .]- -- -- ;

61 l- -11- -0- 1- 1. ->--- ---- H-- -
62 [Cl- -11- --0- 1-- ->--- - --- --63 [Cl- -11- --0- - t- --. -- -> [H-- ---];

64 C---1 -4---- --- --->[-- H-----]
65 CO-- -11- --)- --------- H-----]
66 [CO- -11- --0- - -....- - -H-
67 [CO- -10- -0- 1- ... --- --- H-- -- ;
68 [CO- -11- --0- -- -- t. . - -- --- H-- .. 1
69 [CI- -11- --0- - -- .. . - --- - H--]
70 [Cl- -11- --0- - t .. ---- --- -]
71 [Cl- -10- --0- - ---.] -> ---- H-- ;
72 [Cl- -10- --0- - ..]---- ---- ---
73 [(C1- -00- --0-.. 0 - - [-- - - L,-. ..]
74 [(21- -10- --0- -- .. - --- --- -]
75 let- -11- --0- -- ---.] -> --- L--. ..
76 [CO- -11- .- - 0- .. . - --- - - H-- -A-;
77 [CO-- -11- --0- - t.. ---- --- ---
78 [-0- -- 0-- -- _H... -.. .]
79 [--o- -]- -H--. .. I
80 t-- - 0--]->.... . . .H-. ..]

82 t--00 0- t... . .]- -- -H- --- j;
83 t-01 0- - [-H- ---];
84 t-00 I - -- -[---- -H- --- ,

85 t-01 I- -- [--H- .1j;
86 [--1oo 0--> -H -1";
87 [-If 0 -]-- -- -> [--]
88 [-10 1- ---- > L-]
89 [-11 I-]_ -> [, _ j H-]
90 [-010 --- 000 - -- L -... .. ;
91 [-0-oX - -001 ---I-> -- L- . .. ;
92 t-- -I IX - -XXX- - [-- t ---];
93 [-- -1lIX --- XXX] - -- __. . H-.-
94 t-- -xox --- -xxx t-.. - --.. . H--. . .1
95 - O - [-l- -- --.. - ---:
96 [-001 0- -- -H];
97 --- 010 0-- [-....] - -. .- L]
98 [-- -011 0-- ---.......- -- --.. .. .H - ;
99 (-- -000 1-. I >[. . . L]

100 t-- -001 1 ---- - - > ----
101 (-- -010 1- - -. .-L]
102 [-- -0 11 1- --.. . .]->[. .. .H-]
103 [-- -100 0--- - . . .- H.;

109

Pae 8
ABEL(tm) 3.00a - Document Oenerator 26-Jul-89 03:21 PM
Test Vectors for Module palal

Device PALA
104 [- -101 0---- >[. . .H ;
105 ---110 0- .-- . . -H . . .]
106 [- -111 0.- . ..]- > --.. .. H
107 [-100 1-]->.. . .-H . . .]
108 [-101 1- ->[. . .H]
109 --- 110 1- ->[. . .- H]
110 --- 111 1- ->[.. . .- H]

end of module palal

110

APPENDIX I : PAL B PROGRAMMOING FILES

A. PAL B IWING FILE

000 1 Imodule pib
0002 Iflag 'TI

*00031
0004 1" MONOLITHIC MEMORIES INC. PAL 16L8A-4 FAMWILY/PINOUT CODE: 22/17
0005 1" NATIONAL SEMICONDUCrOR PAL 16L8A2 FAMILY/PINOUT CODE: 95/17
00061
00071I PAL,..B DEVICE 'P16L8';
0008 I RWJDSSI.SOAOAI.P.A18.A17.GND PIN 1,23,4,5,6,7,S,9,10:
(1009 I AIS.ROM[CE,RAMlWRAMWWRAM!3WRAMCE PIN 11,12,13,14,15,16
00101 RAM4W,COPERAM[OE.VCC PIN 17,18,19,20
00111 HLA, - 1,0,.X.
00121I
00131I
00141 EQUATIONS
00151 IRAMCE (IRW &P &IDS) #(IA1 & IA17 & IP & IDS;
00161I
00171I IRAMIW = A18 & IA17 & IRW & IAI & IAO & IDS)
00181I
00191 IRAM2W=!A18 & 1A17 &IRW &!AI& ISO &IDS
00201 # (!A18 & IA17 & IRW & IAI & AO& IDS))
0021 1 #(!AIS & A17 & RW & AI & S1&IDS);
00221I
00231 !.AM3W= IA18 & IA17 &IRW &Al & IAO &IDS)
00241 #(1A18 & A17 &IRW &IAI & S1 &ISO &IDS)
00251 # IA18 & A17 &IRW & IA& Sl&SO &IDS)

*00261 #(!A18 & A17 & IRW & IA & AO&!ISO &IDS);
00271I
00281 IRAM4W=(1A18 & A17 &IRW &SO& Sl& AO &IDS)
00291 # (A18 & A17 &IRW &IS & ISO&!IDS)
00301 # (A18 &IA17 &IRW & Al&AO& IDS)
0031 1 #(1A18 & A17& IRW&AI&Sl& IDS);
00321I
0033 1 IROMCE=(A17 &RW&P& IDS)#(A18&RW& IP& IDS)
00341I
00351I IRAMOE = (1A18 & !A17 & RW & IP)
00361I
00371I ICOPE = (IAlS & A17 & tAlS)
00381I
0039 Itea -vecors ([AI8,A17,A15.RWPA1,AOS1,SODS] -

00401 [RAMCERAMIW.RAMWRAM3WRAM4WROMCERAMOECOPE)
00411
0042 I'RAMCE
0043! (XX.XXL.H,XXX.,LJ -> L,XXX.X,X,X.X
00441 1L,.XXLXAXXLJ - LXX.X.X.XXX
0045 l"RAMIlW
00461 [L,L,X,14..,XXJJ [X.XXXX.X,XJ
0047 I"RAM2W
0048 1 (L.L.XLXLXX.L.J - (XX.L,XXXXX)
00491 .. XXJ-H,X.XJ.J -> ,L.XXXXX
00501 [LXL.,X.H.XLJ ->X.X,LX.XX.XXJ

0051 I"RAM3W
00521 [L.LX.XJL.X.X.LJ -> X.XX.LX,X,X
00531 [L,L,XLXL.L.LLl ->XX,lXXX,XJ

00541 (L..,XLX.LJXH.HLI- fX.X,X.XXXX
* 00551 rLLXXX.LHLXJ.J -> (X.X..LXXXX

0056 I"RAM4W
00571 [LJ,X.L.XXHJiMLJ *> X,XJ4C,XX
00581 X.L X.X.XLJ.Lj -> X.XX,X.L.XXXJ

*00591 [.X.LXJ,H.XXCLJ - IX.XXX.L.XX.XJ
00601 (IL.X,XH.XJ.Li- (XX,XXLX.XXl
0061 I"ROMCE
00621 [CXX.H,X.XXX.LI- MXXXX.LXX

00631I [HAXXLX,XX,.LJ - XXX,XXLXX
0064 I"RAMOB
00651 f LL.XAHLXXX.XXM [>X~X.XXX
0066 I"COPE
00671I (LJ..XXXXXJ fXXX.X.XXX.X.L
00681
00691I
00701I
0071 lend

112

B. PAL B DOCUMNTW FILE

Pap I
ABEL4tm) Version 2.00b - Document Generator 03-May-89 11:11 AM
Equations for Module palb

Device PALB

Reduced Equation.:

RAMCE t(IDS & P & IRW # tA17 & IA18 & IDS &IP);

RAMIW =I(IAO & IAl & A17 &IAIS & IDS & IRW);

RAM2W = (AO & tA1 & A17 & AlS & JDS & tRW
IAI & tA17 & IAIS & IDS & tRW & ISO
tA1 & tA17 & tA18 & IDS & IRW & SI);

RAM3W = IQIAO & Al & tA17 & lAlS & IDS & tRW
AO & tAl & 1AL7 & IA18 & IDS & tRW & tSO)
tA1 & tA17 & tA18 & IDS & tRW & ISO & ISI
tA1 & IA17 & IA18 & IDS & IRW & SO & SI);

RAM4W = t(A0 & Al & tA17 & IA18 & IDS & tRW
Al & IA17 & tA18 & IDS & tRW & SI
IA17 & IA18 & IDS & £RW & ISO & ISI
AO & tA17 & IAIS & IDS & tRW & SO & S1);

ROMCE =I(IA7 &IDS & P&RW #AlS& IDS &IP& RW);

RAMOB = t(tAl7 & IAI8 & IP & RW);,

COPE = I(tAl5 & A17 & IA18)-,

113

Page 2
ABEL(tm) Version 2.00b - Document Generator 03-May-89 11:11 AM
Chip dlagram for Module palb

Device PAL_B

P16L8

....-- \ I--....
\ /

RW 11 20 1 VCCI I
DS1 2 19 1RAMOE

SI 3 18 COPE

SOI 4 17 1RAM4W

AO 5 16 1RAMCE

All 6 15 IRAM3W

P 17 14 RAM2W

AIRI 8 13 1RAM1W

A171 9 12 1ROMCE

I IND 1 0 11 1 A15

114

Page 3
ABELQm) Version 2.00b - Document Generaitor 03-May-89 11:11 AM
Fuse Map for Module palb

Device PALB

0 10 20 30
* ~~~0:-- - - ---- -

32: -X-- ---- -X--X--X -

96:. N-]-7-V --- K)N-O------ND-XXX

128: I..DXCKX XXCXIU -...... XX XX
160: ------------------------------------- XX
192: XOOOOOOOX C -- - XX OXXXXXX XX
224: XXJOOOOOXXX CKXCID - XXCXXXXXX XX
256:. - - - - -

288: - - -X-X- -X
320: I-XCKXX XIKXXX ,OOOOOOOOC. - XX
352:. ICXCX0 D-I.XX IDCXX XX
384: I.CKYZCX (-<CXXIXX)OOX.X)OOOOC XX
416: .KXXXXXIKIXX DCC)=X
448: IKCXICIKXIOOOOXXXC ..- -KOU XX
480: XXXXCXXXXX -DKCK) - XXXXXXX XX
512: - - - ---

544: -X-X---- -X-X-- --- X--X -
576: -X-XX--- -- X-- --- X--X -
608: -X-X-X--X--- --- X--X -
640: -X-XX--X- -X---- --- X--X --
672: XXICXXXXXX CXIXXXXXX - -- 2C)O=XX
704: -CCCX)CK)CXXXX. -- - XX
736:. -. .. XXIKICKXXXXXXXXXJOCD XX
768:-- - - -

800: -X----- -- X--- -

$ 64: . --XXXX XXXXXXXXXX XIO. .. -. XX
896.)DN3- X CK)CXXICXXXX N)ODODD= XX
928:. XI.I.XX . U. XXICK=XX -.IKXOK XX
960:. X--X)KX ICXXICD=N3XXIOCXX

M9:.)XXCX C)K)D XXKXXX

1056: -X-X-- -X-X-- --- X--X -
1088: -X-X--X -X--X- --- X--X -

1120: -X-X-X--X -X- --- X--X -

1152: -X-XX--X- -- X- --- X--X -

1184:. XXCXI .XIK- IXX .---

12 16: XKXXXXXXXX XXX XXDXXXXX XX
1248:. XXKXXX XICX0CXXX XXXI0XX. XX
1280:-- - - - * -

13 12: -X-X- -X---X- -- X-X -
1344: -X-X--X --- X-- -X--X -
1376: -X-XX-- -X-- -- X--X -
1408: X2.X -XX XXICXICX.XDCKX XX
1440:. ..K)KXC --)D I .. - - - - - xx
1472: X------.XX X)KXXXX XICKXXXXX XX
1504:.--------------------------------- XX

1568: -X-X-- -X--X-- --- X--X -

IW-ACIKI C)KIL=x

115

Page 4
ABEL~tm) Version 2.00b - Documnent Generator 03-May489 11:11 AM
Fuse Map for Module palb

Device PAL. B

1632: 1DKXIKXXDCXXXXX XIKX)KX XX
1664: IOCYOOCX X)K)KXX XCXXX XX
1696: XICKXXIXXX XXXXXXXXX XIDDXXXXXXX XX
1728:. XX3- XX NIKXICXX IODXXXXX
1760:----------- IOCICXXXDN.KXXXCXIKX XX
1792: -

1824: -XX- - X-X -

1856: -XX-- -X--X-- -
1888: CKXXICKXI= - XX
1920.-XXXXX XXXXX XXXXXX
1952:)OCXXXXX CKKCXX -CXDDC XX
1984: IO.I- XX XI11 X)..... X7CXXX XX
2016:.XCIKXX ICXCXXN0KIKX XX

116

Page 5
ABEL(tm) Version 2.00b , Document Generator 03-May-89 11:11 AM
for Module palb

Device PAL_B

Device Type: P16L8 Terms Used: 26 out of 64

Terms
Pin# I Name I Used I Max I Term Type l Pin Type

1 IRW . I . I Input
2 1DS I . I I Input
3 ISI I -I .I Input
4 1s0 1 - I I I Input
5 1AO I -- I I I Input
6 1Al I . I I Input
7 1P I. -- I Input
8 1AI8 I .I I Input
9 1AI7 I . I Inut

10 1OND I... SND
11 1A15 I . I I Input
12 1ROMCE 1 2 I 7 I Normal IlOutput
13 1 RAMIW I I 7 1 Normal 11/
14 1RAM2W I3 1 7 I Normal I11/
15 1RAM3W 14 1 7 1 Normal 11/0
16 1RAMCE 1 2 1 7 I Normal 11/0
17 1RAM4W 4 1 7 I Normal II/0
18 1COPE I 1 I 7 I Normal II/0
19 1RAMOE I 1 I 7 I Normal I Output
20 VCC -I-I--- I VCC

end of module palb

117

LIST OF REFERENCES

1. Uzunsokakli, Y., "Design and Implementation of a Debugger for MC68020 Based
Educational Computer Board", Master's Thesis, Naval Postgraduate School,
Monterey, Ca, Dec 1989.

2. Motorola, MC68020 32-Bit Microrocessor User's Manual, Prentice-Hall, 1985.

3. Motorola, MC68881 Floating Point Coprocessor User's Manual, 1985.

4. Motorola, MC68000 Educational Computer Board User's Manual (MEX68KECB/D2).
1982.

5. FutureNet, ABEL 3.0 User's Guide, Jan 1988

6. G. J. Lipovski, 16- and 32-Bit Microcomputer Interfacing, Prentice-Hall, preprint.

118

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman Code 62
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Gerald J. Lipovski 1
° Department of Electrical and Computer Engineering

The University of Texas
Austin, Texas 78712

5. Prof. Jon T. Butler, Code 62BU 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Prof. C. Yang, Code 62YA 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

7. Prof. Frederic Terman, Code 62TZ 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

8. Hava Kuvvetleri Komutanligi 1
Harekat Egitim Daire Baskanligi
Bakanliklar - Ankara / TURKEY

119

9. 3. HIBM K.ligiI
Fabrika Mudurlugu
Etimesgut - Ankara / TURKEY

10. Yavuz TUGCU1
Asagi Eglence Mercimek Sokak
41/20 Etlik - Ankara / TURKEY

11. Mustafa Yavuz UZUNSOKAKLI1
Sancaitepe Mahallesi
4/5 Sokak, No:l Daire:4
Bagcilar - Bakirkoy
Istanbul / TURKEY

12. M. Kadri HEKIMOGLU1
SMC 2455 NPS
Monterey, California 93943

120

